Tatiana Solovey | Deep Learning | Best Researcher Award

Prof. Tatiana Solovey | Deep Learning | Best Researcher Award

Polish Geological Institute | Poland

Dr. Tatiana Solovey is a Polish hydrogeologist and Associate Professor at the Polish Geological Institute – National Research Institute. With over two decades of academic and research experience, she has specialized in groundwater hydrology, environmental geology, and sustainable water resource management. She began her career as an Assistant Lecturer and later Assistant Professor at Chernivtsi National University, Ukraine, before moving to Poland, where she advanced from Senior Researcher to Head of the Department of Hydrogeology. Her international collaborations span internships and research stays in Latvia, Estonia, Norway, Ukraine, and the United States. A dedicated educator and mentor, she has taught hydrogeology, environmental monitoring, and water resource assessment, while also supervising young researchers in European-funded projects. Dr. Solovey is widely recognized for her contributions to transboundary groundwater management and the use of satellite data for hydrological monitoring. She also serves as editor for several leading geoscience journals.

Professional Profile

Scopus

Education

Tatiana Solovey holds advanced degrees in geography and Earth sciences with a specialization in hydrology. She earned her M.Sc. in Geography with a focus on Hydrology from Chernivtsi National University, Ukraine, followed by a Ph.D. in Earth and Environmental Sciences from the same university. Building on this foundation, she achieved her habilitation in Earth and Environmental Sciences (Hydrology) at Taras Shevchenko National University of Kyiv, a credential later nostrified at Nicolaus Copernicus University in Toruń, Poland. Throughout her academic journey, she enriched her expertise through international research internships, including at Taras Shevchenko National University of Kyiv, the University of Latvia, the Estonian Geological Survey, the Geological Survey of Norway, and the San Diego Supercomputer Center. These academic and research experiences shaped her as a leading expert in groundwater sustainability, transboundary aquifers, and hydro-environmental monitoring.

Experience

Dr. Solovey’s professional career reflects a steady progression in academia and research. She began as an Assistant Lecturer and later Assistant Professor at Chernivtsi National University, She then joined the Institute of Technology and Life Sciences, Falenty, Poland, where she served as Senior Researcher she has been affiliated with the Polish Geological Institute – National Research Institute, where her roles have included Senior Researcher, Assistant Professor, and Associate Professor. She has also held leadership positions, such as Head of the Department of Hydrogeology and Deputy Head of the Department of Hydrogeology and Environmental Geology. In addition to her administrative and teaching responsibilities, she has actively contributed to European and international research collaborations and delivered invited lectures across Poland, Ukraine, and international scientific forums. She continues to mentor young researchers, lead hydrology-focused projects, and strengthen international cooperation in water resource sustainability.

Awards and Honors

Dr. Solovey’s research focuses on hydrogeology, groundwater resources, and transboundary water systems. She investigates the hydrological and hydrochemical regimes of wetlands, groundwater exchange processes in transboundary aquifers, and the effects of climate change on water resources. A significant aspect of her work is the integration of remote sensing and GRACE satellite data to monitor groundwater level fluctuations and storage changes. Her studies aim to improve sustainable groundwater management, particularly in cross-border basins such as the Bug River Basin shared by Poland, Ukraine, and Belarus. She also explores hydrogeological models for aquifers, groundwater pollution hazards, and climate-induced water resource variability. By combining field hydrology, geospatial monitoring, and environmental modeling, her work bridges science and policy, offering solutions for water security and environmental resilience. Her research has a strong applied dimension, supporting sustainable development and international cooperation in managing shared water resources across borders.

Research Focus

Dr. Solovey’s distinguished career is marked by academic recognition, memberships, and leadership roles in prominent scientific organizations. She has been an Expert of the Integrated Monitoring of the Natural Environment Commission at the Polish Ministry of the Environment and a member of the Geological Committee of the Polish Academy of Sciences. She is also an active member of several professional associations, including the Ukrainian Geographical Society, the Polish Geological Society, EuroGeoSurveys Working Group on Geohazards, and the International Association of Hydrogeologists. Her expertise has been acknowledged internationally through invited lectures and conference presentations at UNESCO ISARM, the International Association of Hydrogeologists Congress, and the EGU General Assembly. Beyond scientific recognition, she holds key editorial roles as Editor of Geological Quarterly and Przegląd Geologiczny, Deputy Editor-in-Chief of Meteorology, Hydrology, Environmental Monitoring, and Editor of Geology and Geochemistry of Combustible Minerals, reflecting her outstanding contribution to Earth sciences.

Publication Top Notes 

Groundwater pollution risks assessment in Ukraine-Poland transboundary aquifers
Year: 2024

Assessment of the Effectiveness of GRACE Observations in Monitoring Groundwater Storage in Poland
Year: 2025

Conclusion

Tatiana Solovey’s impressive research experience, leadership roles, and editorial contributions make her a strong candidate for the Best Researcher Award. With further development of interdisciplinary research, global impact, and research translation, Solovey could solidify her position as a leading researcher in hydrogeology and environmental geology.

Christian Caamaño Carrillo | Deep Learning | Best Researcher Award

Dr. Christian Caamaño Carrillo | Deep Learning | Best Researcher Award

Docente Depto | Universidad del Bío-Bío | Chile

Dr. Christian Caamaño Carrillo is a Chilean statistician specializing in spatial statistics, semiparametric models, time series, and distribution theory. Currently serving as an Assistant Professor at the Department of Statistics, Universidad del Bío-Bío, Dr. Christian Caamaño Carrillo has built an extensive academic career combining advanced statistical theory with practical applications in environmental and economic data modeling. They hold a Ph.D. in Statistics from the Universidad de Valparaíso, where their research focused on modeling and estimating non-Gaussian random fields. With a strong background in both teaching and research,Dr. Christian Caamaño Carrillo has contributed to the training of future statisticians at undergraduate and graduate levels, delivering courses in geostatistics, linear models, and predictive modeling. Their work has been published in international journals, reflecting an ongoing commitment to methodological innovation and interdisciplinary collaboration. Dr. Christian Caamaño Carrillo continues to advance statistical methods for real-world data, particularly in environmental and spatial applications.

Professional Profile

Orcid

Scholar

Education

Dr. Christian Caamaño Carrillo earned their Ph.D. in Statistics from the Institute of Statistics, Universidad de Valparaíso, Chile, defending their thesis on the “Modeling and estimation of some non-Gaussian random fields” in May under the supervision of Dr. Moreno Bevilacqua and Dr. Carlo Gaetan. They completed an M.Sc. in Mathematics with a specialization in Statistics at the Universidad del Bío-Bío, with a thesis on estimating the Chilean Quarterly GDP Series, advised by Dr. Sergio Contreras. Prior to this, they qualified as a Statistical Engineer at the same institution in, with a thesis on panel data analysis applied to corporate strategies. Their academic journey began with a Bachelor’s degree in Statistics from Universidad del Bío-Bío. This robust educational background has provided them with expertise in statistical modeling, time series analysis, and spatial statistics, forming the foundation, research, and consulting activities.

Experience

Dr. Christian Caamaño Carrillo has been an Assistant Professor at the Department of Statistics, Universidad del Bío-Bío since August, where they teach and supervise both undergraduate and graduate students. From, they served as a Part-time Lecturer in the same department, delivering a wide range of courses in probability, statistical inference, and geostatistics. In parallel, they worked as a Part-time Lecturer at the Department of Mathematics and Applied Physics, Universidad Católica de la Santísima Concepción, focusing on foundational courses in statistics and probability. Their teaching portfolio spans undergraduate courses such as Linear Models, Random Variables, and Statistical Computing, as well as graduate-level instruction in Geostatistical Methods, Semiparametric Models, and Predictive Modeling. They have also contributed to specialized programs at Universidad Adolfo Ibáñez and Universidad de Valparaíso. Alongside their teaching, Dr. Christian Caamaño Carrillo maintains an active research agenda in spatial statistics and environmental data analysis.

Research Focus

Dr. Christian Caamaño Carrillo focuses on developing and applying advanced statistical methods to solve complex real-world problems. Their main research areas include spatial statistics, where they work on modeling spatial and spatio-temporal processes; semiparametric models, which offer flexible approaches for data with both structured and unstructured components; time series analysis, particularly in economic and environmental contexts; and distribution theory, addressing the properties and applications of probability distributions beyond standard Gaussian assumptions. A notable part of their work involves modeling environmental and geostatistical data using robust techniques that handle skewness and heavy-tailed behavior, such as skew-t processes. They are also engaged in methodological innovations for composite likelihood estimation and nearest-neighbor approaches in large spatial datasets. Through interdisciplinary collaborations, Dr. Christian Caamaño Carrillo applies these methods to areas such as environmental monitoring, mineral deposit modeling, and economic indicator estimation, bridging theory and practice in statistical science.

Awards and Honors

Dr. Christian Caamaño Carrillo has earned recognition in the academic community through sustained contributions to spatial statistics and applied statistical modeling. Their doctoral research on non-Gaussian random fields has been cited as a significant methodological advancement in environmental and geostatistical applications. As a faculty member, they have played a key role in developing and teaching specialized statistical courses, shaping the next generation of statisticians in Chile. They have been invited to collaborate with national and international researchers, leading to peer-reviewed publications in respected journals such as Environmetrics. Through graduate thesis supervision and involvement in interdisciplinary projects, Dr. Christian Caamaño Carrillo has contributed to advancing statistical applications in environmental sciences, mining, and economics. While formal awards were not listed, their academic trajectory demonstrates consistent professional excellence and recognition through publications, collaborations, and contributions to statistical education and methodology.

Publication Top Notes

Conclusion

Caamaño-Carrillo is a qualified and accomplished researcher, with a strong academic background, research experience, and teaching expertise. Their research areas are relevant and important in the field of statistics, and their publication record demonstrates their potential for making significant contributions to their field. With continued research and publication efforts, C. Caamaño-Carrillo has the potential to make a meaningful impact in their field and is a strong candidate for the Best Researcher Award.

Dr. Seyed Abolfazl Aghili | machine learning and deep learning | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | machine learning and deep learning | Best Review Paper Award

lecturer, Siran university of science and technology, Iran

Seyed Abolfazl Aghili is a civil engineer and researcher with expertise in construction engineering and management. He holds a Ph.D. in Civil Engineering from Iran University of Science and Technology (IUST). His research focuses on machine learning, resiliency, and building information modeling (BIM). Dr. Aghili has published several papers in reputable journals and has presented his work at international conferences. He is fluent in Persian and English and has skills in various software, including Python, MS Project, and Autodesk AutoCAD.

Profile

orcid

Education 🎓

Ph.D. in Civil Engineering, Construction Engineering and Management, Iran University of Science and Technology (IUST), 2019-2024 (link unavailable) in Civil Engineering, Construction Engineering and Management, Iran University of Science and Technology (IUST), 2013-2015 (link unavailable) in Civil Engineering, Isfahan University of Technology (IUT), 2009-2013

Experience 💼 

Researcher, Iran University of Science and Technology (IUST), 2019-2024  Graduate Research Assistant, Iran University of Science and Technology (IUST), 2013-2015  Undergraduate Research Assistant, Isfahan University of Technology (IUT), 2009-2013

Awards and Honors🏆

Ranked 5th among 2200 participants in Nationwide University Entrance Exam for Ph.D. program in Iran, 2019 Ranked 2nd among all construction management students in Iran University Science and Technology, 2013-2015 Ranked 220th among 32,663 participants (Top 1%) in Nationwide University Entrance Exam for (link unavailable) program in Iran, 2013

Research Focus

Machine learning and deep learning methods  Resiliency  Building Information Modeling (BIM)  Human Resource Management (HRM)  Decision Making Systems for Project Managers

Publications 📚

1. Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review 🤖
2. Data-driven approach to fault detection for hospital HVAC system 📊
3. Feasibility Study of Using BIM in Construction Site Decision Making in Iran 🏗️
4. Review of digital imaging technology in safety management in the construction industry 📸
5. The role of insurance companies in managing the crisis after earthquake 🌪️
6. The need for a new approach to pre-crisis and post-crisis management of earthquake 🌊

Conclusion

Seyed Abolfazl Aghili is an exceptional researcher with a strong academic background, interdisciplinary research experience, and a notable publication record. His teaching and mentoring experience, as well as his technical skills, demonstrate his commitment to education and research. While there are areas for improvement, Dr. Aghili’s strengths make him a strong candidate for the Best Researcher Award.

Aaron Brunk | Applied and Numerical Analysis | Best Researcher Award

Dr. Aaron Brunk | Applied and Numerical Analysis | Best Researcher Award

Dr. Johannes-Gutenberg University, Germany

Dr. Aaron Brunk is a Post-Doc Research Fellow at Johannes Gutenberg-University Mainz, specializing in numerical mathematics under Prof. Dr. Maria M. Lukácová-Medvid’ová. He focuses on thermodynamically consistent fluid modeling, parabolic cross-diffusion system analysis, and structure-preserving method construction. Dr. Brunk completed his PhD with magna cum laude in 2022, studying viscoelastic phase separation. His work includes multiple DFG projects, with roles ranging from PhD student to Principal Investigator. He is an active academic contributor, organizing seminars and workshops, presenting at international conferences, and engaging in research stays and academic self-administration. His current research projects involve variational quantitative phase-field modeling and spinodal decomposition of polymer-solvent systems.

 

Professional Profiles:

🎓 Education

Nov. 2017 – Feb. 2022: Ph.D. in Mathematics (Dr. rer. nat.), Johannes Gutenberg-University Mainz, GermanyDissertation: Viscoelastic phase separation: Well-posedness and numerical analysisDisputation: 11.02.2022Degree: Magna cum laudeSupervisor: Prof. Dr. Mária M. Lukáčová-Medvid’ováOct. 2015 – Nov. 2017: M.Sc. in Mathematics, Johannes Gutenberg-University Mainz, GermanyThesis: Numerische Behandlung von zeitgebrochenen DiffusionsgleichungenSupervisor: Prof. Dr. Thorsten RaaschOct. 2012 – Oct. 2015: B.Sc. in Mathematics, Johannes Gutenberg-University Mainz, GermanyThesis: Mathematische Modellierung von PhosphorylierungssystemenSupervisor: Prof. Dr. Alan Rendall

🎓 Professional Experience

Feb. 2022 – Present: Post-Doc Research Fellow, Institute of Mathematics, Johannes Gutenberg-University Mainz, GermanyGroup: Numerical MathematicsSupervisor: Prof. Dr. Mária M. Lukáčová-Medvid’ováActivities:🧪 Modelling of thermodynamically consistent complex fluids📊 Analysis of parabolic cross-diffusion systems🔧 Construction of structure-preserving methods for cross-diffusion systems👨‍🏫 Assistant in various tutorials and seminars📚 Independent lecturingNov. 2017 – Feb. 2022: Research Assistant, Institute of Mathematics, Johannes Gutenberg-University Mainz, GermanyGroup: Numerical MathematicsSupervisor: Prof. Dr. Mária M. Lukáčová-Medvid’ováActivities:🧪 Modelling and analysis of viscoelastic phase separation👨‍🏫 Assistant in various tutorials and seminars

📚 Third Party Projects

Sep. 2023 – Aug. 2026: German Research Foundation (DFG) – Principal InvestigatorProject: Variational quantitative phase-field modeling and simulation of powder bed fusion additive manufacturing within the DFG Priority Programme 2256Collaborator: B.-X. Xu, Technical University Darmstadt, Material ScienceFunded Ph.D. positionFeb. 2022 – Feb. 2026: German Research Foundation (DFG) – Postdoctoral ResearcherProject: Spinodal decomposition of polymer-solvent systems within the TRR 146 Multiscale Simulation Methods for Soft Matter SystemsPrincipal Investigators: M. Lukáčová-Medvid’ová, B. DünwegNov. 2017 – Feb. 2022: German Research Foundation (DFG) – Ph.D. studentProject: Spinodal decomposition of polymer-solvent systems within the TRR 146 Multiscale Simulation Methods for Soft Matter SystemsPrincipal Investigators: M. Lukáčová-Medvid’ová, B. Dünweg, H. Egger

✍️Publications Top Note :

Analysis of a Viscoelastic Phase Separation Model

Authors: A Brunk, B Dünweg, H Egger, O Habrich, M Lukáčová-Medvid’ová, …

Journal: Journal of Physics: Condensed Matter 33 (23), 234002, 2021

Citations: 19

Global Existence of Weak Solutions to Viscoelastic Phase Separation Part: I. Regular Case

Authors: A Brunk, M Lukáčová-Medvid’ová

Journal: Nonlinearity 35 (7), 3417, 2022

Citations: 14

Modelling Cell-Cell Collision and Adhesion with the Filament Based Lamellipodium Model

Authors: N Sfakianakis, D Peurichard, A Brunk, C Schmeiser

Journal: arXiv preprint arXiv:1809.07852, 2018

Citations: 10

Global Existence of Weak Solutions to Viscoelastic Phase Separation: Part II. Degenerate Case

Authors: A Brunk, M Lukáčová-Medvid’ová

Journal: Nonlinearity 35 (7), 3459, 2022

Citations: 9

Systematic Derivation of Hydrodynamic Equations for Viscoelastic Phase Separation

Authors: D Spiller, A Brunk, O Habrich, H Egger, M Lukáčová-Medvid’ová, …

Journal: Journal of Physics: Condensed Matter 33 (36), 364001, 2021

Citations: 9

Existence, Regularity and Weak-Strong Uniqueness for the Three-Dimensional Peterlin Viscoelastic Model

Authors: A Brunk, Y Lu, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2102.02422, 2021

Citations: 9

Chemotaxis and Haptotaxis on Cellular Level

Authors: A Brunk, N Kolbe, N Sfakianakis

Journal: Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, …

Citations: 4

On Existence, Uniqueness and Stability of Solutions to Cahn–Hilliard/Allen–Cahn Systems with Cross-Kinetic Coupling

Authors: A Brunk, H Egger, TD Oyedeji, Y Yang, BX Xu

Journal: Nonlinear Analysis: Real World Applications 77, 104051, 2024

Citations: 3

Stability and Discretization Error Analysis for the Cahn–Hilliard System via Relative Energy Estimates

Authors: A Brunk, H Egger, O Habrich, M Lukáčová-Medviďová

Journal: ESAIM: Mathematical Modelling and Numerical Analysis 57 (3), 1297-1322, 2023

Citations: 3

Existence and Weak-Strong Uniqueness for Global Weak Solutions for the Viscoelastic Phase Separation Model in Three Space Dimensions

Authors: A Brunk

Journal: arXiv preprint arXiv:2208.01374, 2022

Citations: 3

Relative Energy and Weak–Strong Uniqueness of a Two‐Phase Viscoelastic Phase Separation Model

Authors: A Brunk, M Lukáčová‐Medvid’ová

Journal: ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2023

Citations: 2

Viscoelastic Phase Separation: Well-Posedness and Numerical Analysis

Authors: A Brunk

Journal: Dissertation, Mainz, Johannes Gutenberg-Universität Mainz, 2022

Citations: 2

Relative Energy Estimates for the Cahn-Hilliard Equation with Concentration Dependent Mobility

Authors: A Brunk, H Egger, O Habrich, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2102.05704, 2021

Citations: 2

Stability, Convergence, and Sensitivity Analysis of the FBLM and the Corresponding FEM

Authors: N Sfakianakis, A Brunk

Journal: Bulletin of Mathematical Biology 80, 2789-2827, 2018

Citations: 2

Fundamentals of the Oldroyd-B Model Revisited: Tensorial vs. Vectorial Theory

Authors: A Brunk, J Chaudhuri, M Lukacova-Medvidova, B Duenweg

Journal: arXiv preprint arXiv:2308.01326, 2023

Citations: 1

On Uniqueness and Stable Estimation of Multiple Parameters in the Cahn–Hilliard Equation

Authors: A Brunk, H Egger, O Habrich

Journal: Inverse Problems 39 (6), 065002, 2023

Citations: 1

A Second-Order Fully-Balanced Structure-Preserving Variational Discretization Scheme for the Cahn-Hilliard Navier-Stokes System

Authors: A Brunk, H Egger, O Habrich, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2209.03849, 2022

Citations: 1

Structure-Preserving Approximation of the Cahn-Hilliard-Biot System

Authors: A Brunk, M Fritz

Journal: arXiv preprint arXiv:2407.12349, 2024

Error Analysis for a Viscoelastic Phase Separation Model

Authors: A Brunk, H Egger, O Habrich, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2407.01803, 2024

Nonisothermal Cahn-Hilliard Navier-Stokes System

Authors: A Brunk, D Schumann

Journal: arXiv preprint arXiv:2405.13936, 2024