55 / 100 SEO Score

Dr. Aaron Brunk | Applied and Numerical Analysis | Best Researcher Award

Dr. Johannes-Gutenberg University, Germany

Dr. Aaron Brunk is a Post-Doc Research Fellow at Johannes Gutenberg-University Mainz, specializing in numerical mathematics under Prof. Dr. Maria M. Lukácová-Medvid’ová. He focuses on thermodynamically consistent fluid modeling, parabolic cross-diffusion system analysis, and structure-preserving method construction. Dr. Brunk completed his PhD with magna cum laude in 2022, studying viscoelastic phase separation. His work includes multiple DFG projects, with roles ranging from PhD student to Principal Investigator. He is an active academic contributor, organizing seminars and workshops, presenting at international conferences, and engaging in research stays and academic self-administration. His current research projects involve variational quantitative phase-field modeling and spinodal decomposition of polymer-solvent systems.

 

Professional Profiles:

🎓 Education

Nov. 2017 – Feb. 2022: Ph.D. in Mathematics (Dr. rer. nat.), Johannes Gutenberg-University Mainz, GermanyDissertation: Viscoelastic phase separation: Well-posedness and numerical analysisDisputation: 11.02.2022Degree: Magna cum laudeSupervisor: Prof. Dr. Mária M. Lukáčová-Medvid’ováOct. 2015 – Nov. 2017: M.Sc. in Mathematics, Johannes Gutenberg-University Mainz, GermanyThesis: Numerische Behandlung von zeitgebrochenen DiffusionsgleichungenSupervisor: Prof. Dr. Thorsten RaaschOct. 2012 – Oct. 2015: B.Sc. in Mathematics, Johannes Gutenberg-University Mainz, GermanyThesis: Mathematische Modellierung von PhosphorylierungssystemenSupervisor: Prof. Dr. Alan Rendall

🎓 Professional Experience

Feb. 2022 – Present: Post-Doc Research Fellow, Institute of Mathematics, Johannes Gutenberg-University Mainz, GermanyGroup: Numerical MathematicsSupervisor: Prof. Dr. Mária M. Lukáčová-Medvid’ováActivities:🧪 Modelling of thermodynamically consistent complex fluids📊 Analysis of parabolic cross-diffusion systems🔧 Construction of structure-preserving methods for cross-diffusion systems👨‍🏫 Assistant in various tutorials and seminars📚 Independent lecturingNov. 2017 – Feb. 2022: Research Assistant, Institute of Mathematics, Johannes Gutenberg-University Mainz, GermanyGroup: Numerical MathematicsSupervisor: Prof. Dr. Mária M. Lukáčová-Medvid’ováActivities:🧪 Modelling and analysis of viscoelastic phase separation👨‍🏫 Assistant in various tutorials and seminars

📚 Third Party Projects

Sep. 2023 – Aug. 2026: German Research Foundation (DFG) – Principal InvestigatorProject: Variational quantitative phase-field modeling and simulation of powder bed fusion additive manufacturing within the DFG Priority Programme 2256Collaborator: B.-X. Xu, Technical University Darmstadt, Material ScienceFunded Ph.D. positionFeb. 2022 – Feb. 2026: German Research Foundation (DFG) – Postdoctoral ResearcherProject: Spinodal decomposition of polymer-solvent systems within the TRR 146 Multiscale Simulation Methods for Soft Matter SystemsPrincipal Investigators: M. Lukáčová-Medvid’ová, B. DünwegNov. 2017 – Feb. 2022: German Research Foundation (DFG) – Ph.D. studentProject: Spinodal decomposition of polymer-solvent systems within the TRR 146 Multiscale Simulation Methods for Soft Matter SystemsPrincipal Investigators: M. Lukáčová-Medvid’ová, B. Dünweg, H. Egger

✍️Publications Top Note :

Analysis of a Viscoelastic Phase Separation Model

Authors: A Brunk, B Dünweg, H Egger, O Habrich, M Lukáčová-Medvid’ová, …

Journal: Journal of Physics: Condensed Matter 33 (23), 234002, 2021

Citations: 19

Global Existence of Weak Solutions to Viscoelastic Phase Separation Part: I. Regular Case

Authors: A Brunk, M Lukáčová-Medvid’ová

Journal: Nonlinearity 35 (7), 3417, 2022

Citations: 14

Modelling Cell-Cell Collision and Adhesion with the Filament Based Lamellipodium Model

Authors: N Sfakianakis, D Peurichard, A Brunk, C Schmeiser

Journal: arXiv preprint arXiv:1809.07852, 2018

Citations: 10

Global Existence of Weak Solutions to Viscoelastic Phase Separation: Part II. Degenerate Case

Authors: A Brunk, M Lukáčová-Medvid’ová

Journal: Nonlinearity 35 (7), 3459, 2022

Citations: 9

Systematic Derivation of Hydrodynamic Equations for Viscoelastic Phase Separation

Authors: D Spiller, A Brunk, O Habrich, H Egger, M Lukáčová-Medvid’ová, …

Journal: Journal of Physics: Condensed Matter 33 (36), 364001, 2021

Citations: 9

Existence, Regularity and Weak-Strong Uniqueness for the Three-Dimensional Peterlin Viscoelastic Model

Authors: A Brunk, Y Lu, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2102.02422, 2021

Citations: 9

Chemotaxis and Haptotaxis on Cellular Level

Authors: A Brunk, N Kolbe, N Sfakianakis

Journal: Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, …

Citations: 4

On Existence, Uniqueness and Stability of Solutions to Cahn–Hilliard/Allen–Cahn Systems with Cross-Kinetic Coupling

Authors: A Brunk, H Egger, TD Oyedeji, Y Yang, BX Xu

Journal: Nonlinear Analysis: Real World Applications 77, 104051, 2024

Citations: 3

Stability and Discretization Error Analysis for the Cahn–Hilliard System via Relative Energy Estimates

Authors: A Brunk, H Egger, O Habrich, M Lukáčová-Medviďová

Journal: ESAIM: Mathematical Modelling and Numerical Analysis 57 (3), 1297-1322, 2023

Citations: 3

Existence and Weak-Strong Uniqueness for Global Weak Solutions for the Viscoelastic Phase Separation Model in Three Space Dimensions

Authors: A Brunk

Journal: arXiv preprint arXiv:2208.01374, 2022

Citations: 3

Relative Energy and Weak–Strong Uniqueness of a Two‐Phase Viscoelastic Phase Separation Model

Authors: A Brunk, M Lukáčová‐Medvid’ová

Journal: ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2023

Citations: 2

Viscoelastic Phase Separation: Well-Posedness and Numerical Analysis

Authors: A Brunk

Journal: Dissertation, Mainz, Johannes Gutenberg-Universität Mainz, 2022

Citations: 2

Relative Energy Estimates for the Cahn-Hilliard Equation with Concentration Dependent Mobility

Authors: A Brunk, H Egger, O Habrich, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2102.05704, 2021

Citations: 2

Stability, Convergence, and Sensitivity Analysis of the FBLM and the Corresponding FEM

Authors: N Sfakianakis, A Brunk

Journal: Bulletin of Mathematical Biology 80, 2789-2827, 2018

Citations: 2

Fundamentals of the Oldroyd-B Model Revisited: Tensorial vs. Vectorial Theory

Authors: A Brunk, J Chaudhuri, M Lukacova-Medvidova, B Duenweg

Journal: arXiv preprint arXiv:2308.01326, 2023

Citations: 1

On Uniqueness and Stable Estimation of Multiple Parameters in the Cahn–Hilliard Equation

Authors: A Brunk, H Egger, O Habrich

Journal: Inverse Problems 39 (6), 065002, 2023

Citations: 1

A Second-Order Fully-Balanced Structure-Preserving Variational Discretization Scheme for the Cahn-Hilliard Navier-Stokes System

Authors: A Brunk, H Egger, O Habrich, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2209.03849, 2022

Citations: 1

Structure-Preserving Approximation of the Cahn-Hilliard-Biot System

Authors: A Brunk, M Fritz

Journal: arXiv preprint arXiv:2407.12349, 2024

Error Analysis for a Viscoelastic Phase Separation Model

Authors: A Brunk, H Egger, O Habrich, M Lukacova-Medvidova

Journal: arXiv preprint arXiv:2407.01803, 2024

Nonisothermal Cahn-Hilliard Navier-Stokes System

Authors: A Brunk, D Schumann

Journal: arXiv preprint arXiv:2405.13936, 2024

Aaron Brunk | Applied and Numerical Analysis | Best Researcher Award

You May Also Like