Prof. Ruizi Li | Flexible Electronics | Best Researcher Award

Prof. Ruizi Li | Flexible Electronics | Best Researcher Award 

Assoc. Prof, Northwestern Polytechnical University, China

Dr. Ruizi Li is a highly accomplished researcher with a strong background in materials science and engineering. With a prolific publication record and extensive experience in interdisciplinary research, Dr. Li has made significant contributions to the fields of hybrid X-ray scintillators, perovskite nanocrystals, and flexible electronics. Their work has been published in renowned journals such as Angewandte Chemie, Advanced Functional Materials, and npj Flexible Electronics. Dr. Li’s expertise and commitment to the scientific community are further demonstrated through their peer review contributions to esteemed journals.

Profile

Orcid

🎓 Education

Dr. Ruizi Li’s educational background is marked by a strong focus on materials science and engineering. Although specific details about their academic degrees are not provided, their research and publication record suggest a solid foundation in the principles of materials science, physics, and engineering. Dr. Li’s continuous involvement in cutting-edge research and their ability to collaborate with various researchers indicate a high level of academic achievement and expertise in their field.

👨‍🔬 Experience

With a substantial publication record and involvement in various research projects, Dr. Ruizi Li has accumulated significant experience in materials science and engineering. Their research spans multiple areas, including hybrid X-ray scintillators, perovskite nanocrystals, and flexible electronics. Dr. Li has also demonstrated the ability to work collaboratively with other researchers, contributing to successful projects and publications. Furthermore, their experience as a peer reviewer for prestigious journals highlights their expertise and recognition within the scientific community.

🔍 Research Interest

Dr. Ruizi Li’s research focus includes the development of hybrid X-ray scintillators, perovskite nanocrystals, and flexible electronics. Their work aims to innovate and improve the performance of these materials for various applications, including X-ray imaging and flexible electronics. Dr. Li’s research approach combines experimental and theoretical methods, demonstrating a comprehensive understanding of the materials and their properties. The goal of their research is to create materials and technologies that can be applied in real-world scenarios, enhancing performance and efficiency.

Awards and Honors

While specific awards and honors are not detailed in the provided information, Dr. Ruizi Li’s achievements and contributions to materials science and engineering suggest a strong potential for recognition. Their publication record, peer review activities, and collaborative research efforts demonstrate a commitment to excellence and a high level of expertise, which are often acknowledged through awards and honors in the scientific community.

Publications 

1. Bright and Fast‐Response Hybrid X‐Ray Scintillators by Molecular and Dielectric Confinement 🌟
2. Flash synthesis of high-performance and color-tunable copper(I)-based cluster scintillators for efficient dynamic X-ray imaging ⚡️
3. Photophysical Properties of Copper Halides with Strongly Confined Excitons and Their High-Performance X-Ray Imaging 📸
4. Ultrastable and flexible glass−ceramic scintillation films with reduced light scattering for efficient X−ray imaging 🔍
5. Size Effect on X‐ray Scintillation Performance for Perovskite Nanocrystals Revealed by Mathematical Model 📊
6. Intercalation pseudocapacitance in 2D N-doped V₂O₃ nanosheets for stable and ultrafast lithium-ion storage 🔋
7. Self-assembly of two-dimensional supramolecular as flame-retardant electrode for lithium-ion battery 🔥
8. Controllable assembling of highly-doped linked carbon bubbles on graphene microfolds 💡
9. Robust self-gated-carriers enabling highly sensitive wearable temperature sensors 🌡️
10. Stretchable and Ultrasensitive Intelligent Sensors for Wireless Human–Machine Manipulation 🤖
11. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals 🖨️
12. (1 1 0)-Bridged nanoblocks self-assembled VS₂ hollow microspheres as sodium-ion battery anode with superior rate capability and long cycling life 🔋
13. A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries 🥜
14. Facile synthesis of tetragonal NaV₂O₅·H₂O nanosheets co-intercalated by high content of Na⁺ and H₂O for boosted lithium storage 💧
15. Facile Synthesis of Three-dimensional Hierarchical Ni₃S₂@CoAl-LDHs Nanosheet Arrays and Their Efficient Hydrogen Evolution ⚗️
16. Mo-Doped ultrafine VC nanoparticles confined in few-layer graphitic nanocarbon for improved electrocatalytic hydrogen evolution 💡
17. Nitrogen-Doped Hard Carbon on Nickel Foam as Free-Standing Anodes for High-Performance Sodium-Ion Batteries 🌟
18. Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes 🍊
19. Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage 🌿
20. Sulfur-doped shaddock peel–derived hard carbons for enhanced surface

Conclusion

Dr. Ruizi Li is a highly accomplished researcher with a strong publication record, innovative contributions, and a collaborative approach. Their work in materials science and engineering has significant potential for practical applications and industrial impact. With some focus on practical applications, diverse funding sources, and public engagement, Dr. Li is an excellent candidate for the Best Researcher Award.

Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Assist. Prof. Dr Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Prof. Dr-Ing, National Institute of Technology, Portugal

T.C. da Silva is a researcher and engineer with a strong background in mechanical engineering. He holds a PhD from the University of Brasília and has completed postdoctoral research at various institutions. Silva’s research focuses on smart materials, additive manufacturing, and thermal characterization.

Profile

orcid

scholar

Education 🎓

PhD in Mechanical Engineering, University of Brasília (2019)  Master’s in Mechanical Engineering, University of Brasília (2014)  Specialization in Software Engineering, Catholic University of Brasília (2009-2010)  Bachelor’s in Mechanical Engineering, University for the Development of the State and Region of Pantanal (2003-2008)

Experience 🧪

Researcher, University of Brasília (2012-present)  Postdoctoral researcher, University of Brasília (2020-2021)  Engineer, Brazilian Air Force (2011-2012)  Professor, Federal Institute of Education, Science, and Technology (2005-2007)

Awards & Honors🏆

Unfortunately, the provided text does not mention any specific awards or honors received by T.C. da Silva.

Research Focus 🔍

Smart materials and structures  Additive manufacturing (3D/4D printing) Thermal characterization of materials  Shape memory alloys

Publications📚

1. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn 🌽🧬 (2015)
2. Filho TC da Silva, E Sallica-Leva, E Rayón, CT Santos transformation 🔩🔧 (2018)
3. Emissivity measurements on shape memory alloys 🔍💡 (2016)
4. Development of a gas metal arc based prototype for direct energy deposition with micrometric wire 💻🔩 (2024)
5. Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy ❄️💡 (2022)
6. Stainless and low-alloy steels additively manufactured by micro gas metal arc-based directed energy deposition: microstructure and mechanical behavior 🔩🔧 (2024)
7. Study of the influence of high-energy milling time on the Cu–13Al–4Ni alloy manufactured by powder metallurgy process ⚗️💡 (2021)
8. Cryogenic treatment effect on NiTi wire under thermomechanical cycling ❄️💡 (2018)
9. Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy ❄️💡 (2022)
10. Cryogenic Treatment Effect on Cyclic Behavior of Ni54Ti46 Shape Memory Alloy ❄️💡 (2021)
11. Influence of thermal cycling on the phase transformation temperatures and latent heat of a NiTi shape memory alloy 🔩🔧 (2017)
12. Effect of the Cooling Time in Annealing at 350°C on the Phase Transformation Temperatures of a Ni55Ti45 wt. Alloy 🔩🔧 (2015)
13. Experimental evaluation of the emissivity of a NiTi alloy 🔍💡 (2015)
14. Microstructure, Thermal, and Mechanical Behavior of NiTi Shape Memory Alloy Obtained by Micro Wire and Arc Direct Energy Deposition 🔩🔧 (2025)
15. Low-Annealing Temperature Influence in the Microstructure Evolution of Ni53Ti47 Shape Memory Alloy 🔩🔧 (2024)
16. Use of Infrared Temperature Sensor to Estimate the Evolution of Transformation Temperature of SMA Actuator Wires 🔍💡 (2023)
17. Use of infrared temperature sensor to estimate the evolution of transformation temperature of SMA actuator wires 🔍💡 (2021)
18. Effet du traitement cryogénique sur le comportement cyclique de l’alliage Ni54Ti46 à mémoire de forme ❄️💡 (2020)
19. Efeito de tratamento criogênico no comportamento cíclico da liga Ni54Ti46 com memória de forma ❄️💡 (2020)
20. Functional and Structural Fatigue of NiTi Shape Memory Wires Subject to Thermomechanical Cycling 🔩🔧 (2019)

Conclusion

T.C. da Silva is an accomplished researcher with a strong track record in additive manufacturing, materials science, and mechanical engineering. His extensive research experience, interdisciplinary approach, and commitment to knowledge sharing make him an ideal candidate for the Best Researcher Award. By addressing areas for improvement, he can continue to grow as a researcher and make even more significant contributions to his field.

Nahid Entezarian | Machine Interaction | Best Researcher Award

Ms. Nahid Entezarian | Machine Interaction | Best Researcher Award

Author, University of Mashhad, Mashhad, Iran

Nahid Entezarian is a Ph.D. candidate in Information Technology Management at Ferdowsi University of Mashhad. Her research interests include text mining, data mining, NeuroIS, artificial intelligence, machine learning, and research methodology in information systems.

Profile

scholar

Education 🎓

Nahid Entezarian is currently pursuing her Ph.D. in Information Technology Management at Ferdowsi University of Mashhad, specializing in Smart Business. Her academic background has provided a solid foundation for her research and professional endeavors.

Experience 🧪

Unfortunately, the provided text does not mention specific work experience or professional roles held by Nahid Entezarian.

Awards & Honors �

Unfortunately, the provided text does not mention specific awards or honors received by Nahid Entezarian.

Research Focus 🔍

1. Text Mining: Investigating the application of text mining techniques in various domains.
2. Data Mining: Exploring the use of data mining methods for knowledge discovery.
3. NeuroIS: Examining the intersection of neuroscience and information systems.
4. Artificial Intelligence: Investigating the application of AI in various domains.
5. Machine Learning: Developing and applying machine learning algorithms for data analysis.

Publications📚

1. An investigation extent and factors influencing the users’ perception of database interface based on Nielsen model 📊
2. GUIDELINES FOR USER INTERFACE DESIGN BASED ON USERS’BEHAVIORS, EXPECTATIONS AND PERCEPTIONS 📈
3. Topic Modeling on System Thinking Themes Using Latent Dirichlet Allocation, Non-Negative Matrix Factorization and BER Topic 🤖
4. NeuroIS: A Systematic Review of NeuroIS Through Bibliometric Analysis 🧠
5. The Application of Artificial Intelligence in Smart Cities: A Systematic Review with Methodi Ordinatio 🌆
6. Systems Thinking in the Circular Economy: An Integrative Literature Review ♻️
7. The impact of knowledge management and Industry 4.0 technologies in organizations: a meta-synthesis approach 📈
8. Topic Modeling Emerging Trends for Business Intelligence in Marketing: With Text Mining and Latent Dirichlet Allocation 📊
9. Topic Modeling Emerging Trends for Business Intelligence in Marketing: With Text Mining and Latent Dirichlet Allocation 📊
10. Introducing and Evaluation of Rogers’s Diffusion Innovation Theory 📈

Conclusion 🏆

Nahid Entezarian’s impressive academic and research experience, research output, interdisciplinary research approach, and collaborations make her an outstanding candidate for the Best Researcher Award. While there are areas for improvement, her strengths and achievements demonstrate her potential to make a significant impact in her field.

Xueliang Xiao | Shape memery polymers | Best Researcher Award

Prof. Xueliang Xiao | Shape memery polymers | Best Researcher Award

Dirctor, Jiangnan University, China

Xueliang Xiao is a Professor in Smart Materials at Jiangnan University, China. He received his Ph.D. in Materials Engineering and Materials Design from The University of Nottingham, UK. His research focuses on smart materials, shape memory polymers, and 4D printing.

Profile

scholar

Education 🎓

Xueliang Xiao received his Ph.D. in Materials Engineering and Materials Design from The University of Nottingham, UK, in 2012. He was supervised by Prof. Andrew C. Long.

Experience 🧪

Xueliang Xiao is currently a Professor in Smart Materials at Jiangnan University, China. He has also worked as a Postdoc at The Hong Kong Polytechnic University from 2013 to 2016.

Awards & Honors �

Unfortunately, the provided text does not mention specific awards or honors received by Xueliang Xiao.

Research Focus 🔍

Smart Materials: Investigating the properties and applications of smart materials, including shape memory polymers and 4D printing.  Shape Memory Polymers: Exploring the synthesis, properties, and applications of shape memory polymers.. 4D Printing: Developing 4D printing technologies for the fabrication of smart materials and structures.

Publications📚

1. Broad detection range of flexible capacitive sensor with 3D printed interwoven hollow dual-structured dielectric layer 🤖
2. Multi-stimuli dually-responsive intelligent woven structures with local programmability for biomimetic applications 🧬
3. Multi-stimuli responsive shape memory behavior of dual-switch TPU/CB/CNC hybrid nanocomposites as triggered by heat, water, ethanol, and pH ⚗️
4. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions 🏋️‍♀️
5. 4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape memory effect and synergistically enhanced mechanical properties 🌊
6. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite 💻
7. Aerogels with shape memory ability: Are they practical? -A mini-review ❓
8. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection 🤖
9. Electroinduced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis 📊
10. Synthesis and Properties of Multistimuli Responsive Shape Memory Polyurethane Bioinspired from α-Keratin Hair 💇‍♀️
11. Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric 📈
12. Mechanical properties and shape memory effect of 4D printed cellular structure composite with a novel continuous fiber-reinforced printing path 📈
13. Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: A systematic review 📊

Conclusion 🏆

Xueliang Xiao’s impressive academic and research experience, research output, editorial and reviewer roles, and interdisciplinary research approach make him an outstanding candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make a significant impact in his field.

Maohua Du | mechanical engineering and biomedical sciences | Outstanding Scientist Award

Dr. Maohua Du | mechanical engineering and biomedical sciences | Outstanding Scientist Award

Professor, Kunming University of Science & Technology, China

Maohua Du is a Professor at the Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology. He received his Ph.D. in Mineral Processing Engineering from Kunming University of Science and Technology in 2008. His research focuses on finite element modeling, numerical simulation, and experimental investigation of high-speed machining processes.

Profile

scopus

Education 🎓

B.S. in Mechanical Engineering, Kunming University of Science and Technology, China (1989) M.S. in Mechanical Engineering, Kunming University of Science and Technology, China (1992) Ph.D. in Mineral Processing Engineering, Kunming University of Science and Technology, China (2008)

Experience 🧪

Assistant, Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, China (1992-1994)  Lecturer, Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, China (1994-2001) Associate Professor, Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, China (2001-2022)  Professor, Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, China (2022-present)

Awards & Honors �

Second Prize, Yunnan Provincial Natural Science Award (2022) Second Prize, Classroom Teaching Competition at Kunming University of Science and Technology (2016)  Excellent Class Teacher, Kunming University of Science and Technology (1999)

Research Focus 🔍

Finite Element Modeling: Developing finite element models for high-speed machining processes.  Numerical Simulation: Conducting numerical simulations to investigate the mechanics of high-speed machining.. Experimental Investigation: Experimentally investigating the effects of high-speed machining on tool wear and material properties. . Tool Wear Reduction: Developing strategies to reduce tool wear during high-speed machining.  Parameters Optimization: Optimizing machining parameters to improve process efficiency and product quality.

Publications📚

Numerical simulation and experimental verification on heat-flow coupling during laser cladding of 420 stainless steel  1 Citations

Conclusion 🏆

Maohua Du’s impressive academic and research experience, interdisciplinary research approach, awards and honors, teaching experience, and research output make him a strong candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make a significant impact in his field.

Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Assoc Prof Dr. Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Yue Wang is an accomplished Assistant Professor at Xi’an Jiaotong University’s School of Material Science and Engineering. With a deep focus on nanomechanics and electrochemical reactions, his research has contributed significantly to materials science, particularly in magnesium alloys and battery technologies. Wang completed his Ph.D. in 2018, building on extensive hands-on experience with TEM and other nanotechnology techniques. He is a recipient of numerous prestigious awards and has several high-impact publications in journals like Nature Communications and Science. His work pushes the boundaries of materials science, enabling innovations in corrosion resistance and energy storage. 🧪📚🔬

 

Publication Profile

Education🎓📖🌍

Yue Wang holds a Ph.D. in Materials Science and Engineering from Xi’an Jiaotong University, where he started his studies in 2013. He completed a Bachelor’s in the same field from Northwestern Polytechnical University in 2013. He was also a visiting student at Lawrence Berkeley National Lab, University of California, Berkeley, from February 2017 to February 2018. During this period, he gained valuable exposure to cutting-edge research environments, broadening his knowledge of nanomaterials and real-time electrochemical reactions. His academic journey showcases a strong foundation in both theoretical and applied materials science.

Experience🏫🧑‍🏫🛠️

Yue Wang has been with Xi’an Jiaotong University’s School of Material Science and Engineering since 2018, where he now serves as a tenured Assistant Professor. Prior to his tenure, he worked extensively in in-situ environmental TEM and nanomechanical testing, producing significant contributions to battery technologies and corrosion resistance. His research focuses on Si-based materials, Mg alloys, and novel microscopy techniques. He also served as a Teaching Assistant at the university, where he taught the course on mechanical properties of materials. His career reflects a strong emphasis on research and education in materials science.

Awards and Honors🏆

Yue Wang has received several prestigious awards throughout his career. He was recognized for his high-impact contributions in materials science, including publishing in leading journals such as Science and Nature Communications. His innovative research in the field of nanomechanics and corrosion resistance has earned him multiple research grants and distinctions within academic circles. He has also been an invited speaker at several international conferences, where his work on Si-based materials and Mg alloys has been widely lauded. His dedication to pushing the boundaries of materials research continues to earn him accolades. 🥇🎖️

Research Focus 🔬🧲📐

Yue Wang’s research is primarily centered on the mechanical properties and nanostructures of Si-based materials and metals. His work utilizes in-situ quantitative nanomechanics to probe these materials at the micro and nano levels. Wang’s expertise extends to environmental TEM studies, particularly in observing real-time electrochemical reactions in lithium/sodium ion batteries and developing anti-corrosion techniques for magnesium alloys. He also specializes in advanced microscopy, nanomechanical testing, and fabrication using Focused Ion Beam (FIB) technology, contributing to improved corrosion resistance and battery efficiency.

Publication  Top Notes

  • Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe
    Science, 2020, 369 (6503), 542-545
    Citations: 220
    This work explores the mechanical properties of InSe, a van der Waals semiconductor, highlighting its exceptional plasticity, a critical factor for flexible electronics.
  • Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2
    Nature Communications, 2018, 9 (1), 4058
    Citations: 98
    The paper introduces a method to enhance the corrosion resistance of Mg alloys through a CO2-based treatment.
  • In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon
    NPG Asia Materials, 2016, 8 (7), e291-e291
    Citations: 81
    A detailed study using transmission electron microscopy (TEM) to observe how crystalline silicon transitions to an amorphous state under mechanical stress.
  • Chestnut-like SnO2/C nanocomposites with enhanced lithium-ion storage properties
    Nano Energy, 2016, 30, 885-891
    Citations: 66
    This research investigates nanocomposites for improving lithium-ion battery performance.
  • Tension–compression asymmetry in amorphous silicon
    Nature Materials, 2021, 20 (10), 1371-1377
    Citations: 52
    The work explores the mechanical behavior of amorphous silicon, especially the asymmetry between tension and compression.
  • High-throughput screening of 2D van der Waals crystals with plastic deformability
    Nature Communications, 2022, 13 (1), 7491
    Citations: 45
    This paper focuses on the search for two-dimensional van der Waals materials with superior plasticity for next-generation flexible electronics.
  • Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam
    Applied Physics Letters, 2015, 106 (8)
    Citations: 36
    The study analyzes the impact of thermal treatment on the mechanical properties of silicon structures at the submicron scale.
  • Ceramic nanowelding
    Nature Communications, 2018, 9 (1), 96
    Citations: 34
    This paper discusses the novel concept of ceramic nanowelding, which could have implications for nanomanufacturing and electronics.
  • In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
    RSC Advances, 2016, 6 (14), 11441-11445
    Citations: 26
    In this work, the authors investigate the sodiation process in copper oxide nanowires, which is relevant for battery technology.
  • In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction
    RSC Advances, 2016, 6 (98), 96035-96038
    Citations: 21
    This research reveals how MoS2 structures change during sodium ion insertion, providing insights for energy storage applications.

Conclusion

The candidate’s expertise in nanomechanics, in-situ TEM, and nanomaterial testing positions them as a leader in their field, making them a worthy candidate for the Best Researcher Award. Their ability to innovate and apply cutting-edge techniques in materials science, combined with their teaching prowess, sets them apart. Expanding their international collaborations and research impact would further elevate their profile for such prestigious recognition.