Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Assist. Prof. Dr Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Prof. Dr-Ing, National Institute of Technology, Portugal

T.C. da Silva is a researcher and engineer with a strong background in mechanical engineering. He holds a PhD from the University of Brasília and has completed postdoctoral research at various institutions. Silva’s research focuses on smart materials, additive manufacturing, and thermal characterization.

Profile

orcid

scholar

Education 🎓

PhD in Mechanical Engineering, University of Brasília (2019)  Master’s in Mechanical Engineering, University of Brasília (2014)  Specialization in Software Engineering, Catholic University of Brasília (2009-2010)  Bachelor’s in Mechanical Engineering, University for the Development of the State and Region of Pantanal (2003-2008)

Experience 🧪

Researcher, University of Brasília (2012-present)  Postdoctoral researcher, University of Brasília (2020-2021)  Engineer, Brazilian Air Force (2011-2012)  Professor, Federal Institute of Education, Science, and Technology (2005-2007)

Awards & Honors🏆

Unfortunately, the provided text does not mention any specific awards or honors received by T.C. da Silva.

Research Focus 🔍

Smart materials and structures  Additive manufacturing (3D/4D printing) Thermal characterization of materials  Shape memory alloys

Publications📚

1. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn 🌽🧬 (2015)
2. Filho TC da Silva, E Sallica-Leva, E Rayón, CT Santos transformation 🔩🔧 (2018)
3. Emissivity measurements on shape memory alloys 🔍💡 (2016)
4. Development of a gas metal arc based prototype for direct energy deposition with micrometric wire 💻🔩 (2024)
5. Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy ❄️💡 (2022)
6. Stainless and low-alloy steels additively manufactured by micro gas metal arc-based directed energy deposition: microstructure and mechanical behavior 🔩🔧 (2024)
7. Study of the influence of high-energy milling time on the Cu–13Al–4Ni alloy manufactured by powder metallurgy process ⚗️💡 (2021)
8. Cryogenic treatment effect on NiTi wire under thermomechanical cycling ❄️💡 (2018)
9. Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy ❄️💡 (2022)
10. Cryogenic Treatment Effect on Cyclic Behavior of Ni54Ti46 Shape Memory Alloy ❄️💡 (2021)
11. Influence of thermal cycling on the phase transformation temperatures and latent heat of a NiTi shape memory alloy 🔩🔧 (2017)
12. Effect of the Cooling Time in Annealing at 350°C on the Phase Transformation Temperatures of a Ni55Ti45 wt. Alloy 🔩🔧 (2015)
13. Experimental evaluation of the emissivity of a NiTi alloy 🔍💡 (2015)
14. Microstructure, Thermal, and Mechanical Behavior of NiTi Shape Memory Alloy Obtained by Micro Wire and Arc Direct Energy Deposition 🔩🔧 (2025)
15. Low-Annealing Temperature Influence in the Microstructure Evolution of Ni53Ti47 Shape Memory Alloy 🔩🔧 (2024)
16. Use of Infrared Temperature Sensor to Estimate the Evolution of Transformation Temperature of SMA Actuator Wires 🔍💡 (2023)
17. Use of infrared temperature sensor to estimate the evolution of transformation temperature of SMA actuator wires 🔍💡 (2021)
18. Effet du traitement cryogénique sur le comportement cyclique de l’alliage Ni54Ti46 à mémoire de forme ❄️💡 (2020)
19. Efeito de tratamento criogênico no comportamento cíclico da liga Ni54Ti46 com memória de forma ❄️💡 (2020)
20. Functional and Structural Fatigue of NiTi Shape Memory Wires Subject to Thermomechanical Cycling 🔩🔧 (2019)

Conclusion

T.C. da Silva is an accomplished researcher with a strong track record in additive manufacturing, materials science, and mechanical engineering. His extensive research experience, interdisciplinary approach, and commitment to knowledge sharing make him an ideal candidate for the Best Researcher Award. By addressing areas for improvement, he can continue to grow as a researcher and make even more significant contributions to his field.

Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

Prof. Dr. Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

professor, University of Silesia, Katowice, China

Prof. Dr. Julian Plewa is a distinguished materials scientist with expertise in metallurgy, nanotechnology, and optical materials. With a career spanning over five decades, he has held academic and research positions at leading institutions in Poland and Germany. His contributions to high-temperature superconductors, thermoelectrics, and mechanical metamaterials have advanced the field of materials science. Currently a professor at the University of Silesia, he continues to pioneer innovations in functional materials and optical materials.

Profile

orcid

Education 🎓

Master of Science in Metallurgy – AGH University of Science and Technology, Cracow, 1973 Doctor of Philosophy in Technical Sciences – AGH University of Science and Technology, 1979 Habilitated Doctor in Materials Science – Silesia University of Technology, Gliwice, 2005

Experience 🏫

Lecturer – Silesia University of Technology (1981–1988) Teaching Assistant – University of Applied Sciences Muenster (2010–2017)  Visiting Professor – Cracow University of Technology (1995–2017) Professor – University of Silesia (2019–present)

Awards & Honors 🏆

Recognized for contributions to non-ferrous metallurgy Honored for advancements in high-temperature superconductors Awarded for innovative research in thermoelectrics mAcknowledged for breakthroughs in optical materials and mechanical metamaterials

Research Focus 🔬

Non-ferrous metallurgy – Lead refining, zinc spraying Sustainable materials – Battery recycling, aluminum foil reuse Advanced materials – High-temperature superconductors, thermoelectrics Optical materials – Phosphors, specialty glass Mechanical metamaterials – Structural innovations and applications

Publications 📚

📄 Auxetic Structures & Mechanical Metamaterials
🔹 J. Plewa, M. Plonska, P. Lis, Investigation of Modified Auxetic Structures from Rigid Rotating Squares, Materials 15(2022) 2848

📄 Lanthanide & Glass Crystallization
🔹 J. Plewa et al., Crystallization of Lanthanide—Ho³⁺ and Tm³⁺ Ions Doped Tellurite Glasses, Materials 15(2022) 2662
🔹 M. Płońska, J. Plewa, Crystallization of GeO₂-Al₂O₃-Bi₂O₃ Glasses, Crystals 10(2020) 522

📄 Optical & Luminescent Materials
🔹 J. Plewa et al., Partial Crystallization of Er³⁺/Yb³⁺ Co-Doped Oxyfluoride Glass, Materials Engineering 39(2018) 204
🔹 T. Dierkes, J. Plewa et al., From Metals to Nitrides – Rare Earth Binary Systems, J. Alloys & Compounds 693(2017) 291
🔹 A. Katelnikovas, J. Plewa et al., Yellow Emitting Garnet Phosphors for pcLEDs, J. Luminescence 136(2013) 17
🔹 J. Plewa, T. Jüstel, Pr³⁺ Doped UV Emitting Luminescent Ceramics, Materials Science Forum 636-637(2010) 344

📄 Superconductors & Thermoelectric Materials
🔹 J. Plewa et al., Preparation & Characterization of Calcium Cobaltite for Thermoelectric Applications, Eur. Ceramic Society 25(2005) 1997
🔹 J. Plewa et al., Superconducting Materials for Electronic Applications, Physica C 372-376(2002) 1046
🔹 K. Itoh, J. Plewa et al., RF Magnetic Shielding Effect of a Sealed Bottom Cylinder, Applied Superconductivity Conf. Proc. (2000)

Conclusion 🎯

This researcher is highly suitable for the Research Visionary in Materials Mechanics Award, given their long-standing impact on materials science, mechanical metamaterials, and sustainable material innovation. By expanding industry collaboration, integrating computational mechanics, and increasing patent applications, their contributions could reach even greater heights in the field of materials mechanics. 🚀