Zicheng Xin | intelligentialization | Best Researcher Award

Dr. Zicheng Xin | intelligentialization | Best Researcher Award

postdoctor, University of Science and Technology Beijing, China

Zicheng Xin is a renowned researcher and visiting professor at the Korea Invention Academy. He is affiliated with the University of Science and Technology Beijing (USTB) and has made significant contributions to the field of metallurgical engineering. His research focuses on metallurgical process engineering, intelligence, and simulation.

Profile

scopus

Education 🎓

Ph.D. in Metallurgical Engineering, State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (USTB) (2018-2022)

Experience 🧪

Visiting Professor, Korea Invention Academy (current)  Researcher, State Key Laboratory of Advanced Metallurgy, USTB (current)

Awards & Honors🏆

“Multiscale modeling and collaborative manufacturing for steelmaking plants”, the 10th World Scientist Grand Award — Golden Scientist Grand Award (Second Place, International Federation of Inventors’ Associations, 2023) “Multiscale modeling and collaborative manufacturing for steelmaking plants”, the 10th World Scientist Grand Award— Science & Technology Grand

Research Focus 🔍

Metallurgical process engineering and intelligence  Simulation and optimization of metallurgical process

Publications📚

1. Analysis of multi-zone reaction mechanisms in BOF steelmaking and comprehensive simulation [J]. Materials, 2025, 18(5): 1038. – Zicheng Xin, Qing Liu, Jiangshan Zhang, et al.
2. Modeling of LF refining process: a review [J]. Journal of Iron and Steel Research International, 2024, 31(2): 289-317. – Zicheng Xin, Jiangshan Zhang, Kaixiang Peng, et al.
3. Explainable machine learning model for predicting molten steel temperature in LF refining process [J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(12): 2657-2669. – Zicheng Xin, Jiangshan Zhang, Kaixiang Peng, et al.
4. Predicting temperature of molten steel in LF refining process using IF-ZCA-DNN model [J]. Metallurgical and Materials Transactions B, 2023, 54(3): 1181-1194. – Zicheng Xin, Jiangshan Zhang, Junguo Zhang, et al.
5. Predicting the alloying element yield in a ladle furnace using principal component analysis [J]. … – Zicheng Xin, Jiangshan Zhang, Yu Jin, et al.

Conclusion

Zicheng Xin’s academic excellence, research focus, and international recognition make him a strong candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make significant contributions to the field of metallurgy.

Dr. Rui Bao | Viscoelastic curing kinetics | Best Scholar Award

Dr. Rui Bao | Viscoelastic curing kinetics | Best Scholar Award

Dr. Rui Bao, China university of petroleum Beijing, China

Dr. Rui Bao is a highly accomplished individual with a robust educational background and significant professional experience in mechanical engineering, particularly in the areas of composite materials and offshore engineering. She is currently pursuing her PhD at the China University of Petroleum (Beijing), with an expected graduation in December 2024. She also spent time as a visiting PhD student at Nanyang Technological University, where she specialized in strength failure analysis, composite flexible risers, and residual stress in manufacturing.

She holds a Master’s and Bachelor’s degree in Mechanical Engineering from the China University of Petroleum (East China), where she was recognized as an outstanding student and received first-class scholarships. Her undergraduate and graduate research focused on water injection columns, mechanical properties of packers, and other mechanical analyses.

Professionally, Dr. Đorđević worked as a Well Completion Engineering Assistant Engineer at COSL, where she was responsible for the CAD design and drafting of offshore wellhead components and the development and testing of packers. She has also led significant projects such as the NSFC general project on the strength failure analysis of flexible riser composite armored wire, showcasing her skills in materials and structural analysis, innovative design, and team collaboration.

With a deep understanding of composite materials, advanced computational modeling techniques, and a strong track record of academic and professional excellence, Dr. Đorđević is well-positioned to make significant contributions to the field of mechanical engineering and beyond.

 

Professional Profiles:

Orcid

🎓 Education

China University of Petroleum (Beijing)
Expected in Dec 2024
Nanyang Technological University
Visiting PhD Student, Mechanical EngineeringHonors: 🏅 Outstanding Graduate Student / 🥇 First-Class ScholarshipRelevant Directions:🛠️ Strength Failure Analysis⚙️ Composite Flexible Risers🔧 Residual Stress of Manufacturing (NSFC, general project)China University of Petroleum (East China)
Bachelor in Mechanical Engineering (09/2012 – 06/2016)Honors: 🏅 Excellent Graduate Cadres / 🥇 First-Class ScholarshipRelevant Directions:🚰 Water Injection Column📐 Mechanical Analysis🧩 Mechanical Properties of Packers (General project)Master in Mechanical Engineering (09/2016 – 06/2019)

🛠️ Work Experience

Well Completion Engineering Assistant Engineer – COSL (Jul 2019 – Aug 2020)Design and Drafting of Offshore Wellhead Components: ✏️ Responsible for the CAD design and drafting of key offshore wellhead components (packers and compensators), ensuring precise specifications and functional integrity to meet the demands of harsh offshore environments.Development and Testing of Packers: 🧪 Involved in the manufacturing and testing of packers in the processing workshop to ensure their mechanical and safety performance.

📊 Project Experience

Strength Failure Analysis of Flexible Riser Composite Armored Wire Considering Residual Stress (NSFC, general project) 2021‐Present

Comprehensive Materials and Structural Analysis Skills: 🧬 Proficient in composite material performance analysis and evaluation of the impact of residual stress on the integrity of composite armor line structures. Able to use advanced computational modeling techniques (such as finite element analysis) to simulate and optimize complex structures.Innovative Design and Performance Optimization Capability: 💡 Leveraging a deep understanding of composite materials and structural performance to innovate the design and optimization of flexible risers, improving their performance and reliability in marine engineering applications.Interdisciplinary Communication and Team Collaboration Skills: 🤝 Adept at collaborating across disciplines to achieve project goals efficiently. 

📖 Publications Top Note :