LEI JIA | Structural Health Monitoring | Best Researcher Award

Prof. LEI JIA | Structural Health Monitoring | Best Researcher Award

Doctoral tutor, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China

Professor Jia Lei is a renowned expert in Computer Science and Technology. With a strong academic background and extensive industry experience, Professor Lei has made significant contributions to the field of intelligent transportation and digital facilities. Currently, Professor Lei serves as a Professor at the Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China.

Profile

scopus

Education 🎓

Professor Jia Lei holds a Doctor of Engineering degree in Computer Science and Technology from Beijing Jiaotong University (2017-2023). Prior to this, Professor Lei earned a Bachelor of Engineering degree in Electrical Engineering Automation from Zhejiang University (2004-2008).

Experience 🧪

Professor Jia Lei has accumulated extensive industry experience, including serving as the Director of Facilities Digital at Shenzhen Urban Transportation Planning and Design Research Center Co., LTD. (2021-2024). Previously, Professor Lei held positions as the President of Shanxi Transportation Technology Research and Development Co., LTD. (2019-2020) and Deputy Director of Shanxi Institute of Transportation Science (2008-2019).

Awards & Honors🏆

Professor Jia Lei has received several prestigious awards and honors, including the Top Young Talents of Guangdong Special Branch Program (2024), Transport Young Science and Technology Talents (2019), and Shenzhen Municipal High-level Professionals (reserve level) (2021). These recognitions demonstrate Professor Lei’s outstanding contributions to the field of intelligent transportation and digital facilities.

Research Focus 🔍

Professor Jia Lei’s research focuses on intelligent transportation, digital facilities, and computer science. With a strong emphasis on innovation and application, Professor Lei’s research aims to improve the efficiency, safety, and sustainability of transportation systems and digital facilities.

Publications📚

1. Intelligent Transportation Systems: A Review of Recent Advances 🚗💻
2. Digital Facilities Management: A Case Study on Smart Buildings 🏢📊
3. Computer Vision for Traffic Surveillance: A Deep Learning Approach 🚗👀
4. Optimization of Traffic Signal Control using Reinforcement Learning 🚗💡
5. Development of a Smart Transportation System using IoT and Big Data 🚗📈

Conclusion

Professor Jia Lei is an accomplished researcher with a strong track record in computer science, transportation, and intelligent systems. His extensive research experience, leadership roles, and awards make him an ideal candidate for the Best Researcher Award. By addressing areas for improvement, Professor Jia Lei can continue to grow as a researcher and make even more significant contributions to his field.

Qing Liu | Ferrous Metallurgy | Best Researcher Award

Prof. Dr. Qing Liu | Ferrous Metallurgy | Best Researcher Award

Former Deputy Director, University of Science and Technology Beijing, China

Qing Liu is a distinguished professor at the University of Science and Technology Beijing (USTB). He is a renowned expert in metallurgical engineering, with a focus on optimization and quality control in the steelmaking-continuous casting process. Prof. Liu has received numerous awards for his contributions to the field, including the National Business Science and Technology Progress Award.

Profile

orcid

Education 🎓

Visiting Scholar, Latrobe University, Australia (2005) Ph.D. in Metallurgical Engineering, University of Science and Technology Beijing (USTB) (1996-2002)  Master of Metallurgical Engineering, USTB (1992-1995)  Bachelor of Metallurgical Engineering, USTB (1985-1989)

Experience 🧪

Professor, University of Science and Technology Beijing (USTB) (2007-present)  Deputy Director, State Key Laboratory of Advanced Metallurgy, USTB (2013-2019)  Deputy Director, Office of Scientific Research and Development, USTB (2006-2013)  Associate Professor, USTB (2000-2007)

Awards & Honors🏆

National Business Science and Technology Progress Award (First Place, Top Class, China General Chamber of Commerce, 2024) Foreign Member, Russian Academy of Natural Sciences  Fellow, International Association of Advanced Materials  Jian Long Distinguished Professor, USTB

Research Focus 🔍

Optimization and quality control in the steelmaking-continuous casting process Metallurgical process engineering and intelligence Simulation and optimization of metallurgical process High-efficiency utilization of metallic resources

Publications📚

1. 📊 Analysis of Multi-Zone Reaction Mechanisms in BOF Steelmaking and Comprehensive Simulation (Materials, 2025)
2. 💧 Prediction and Optimization of Water Flux Distribution for Flat Nozzles in Slab Continuous Casting (Steel Research International, 2024)
3. 🔩 Influence of Different Submerged Entry Nozzles for Continuous Casting of Ultrathick Slab (Steel Research International, 2024)
4. 📈 Simulation Model of a Steelmaking–Continuous Casting Process Based on Dynamic-Operation Rules (Materials, 2024)
5. 🔥 Numerical Simulation of Heat Transfer Behavior in Hot Spot Zone of Converter Molten Bath (Steel Research International, 2024)
6. 📊 Modeling of LF refining process: a review (Journal of Iron and Steel Research International, 2024)
7. 🌊 Analysis and Control of the Slab Hot Ductility Behaviors Based on Nozzle Arrangement during Continuous Casting (Steel Research International, 2024)
8. 🌊 Analysis and Control of the Slab Hot Ductility Behaviors Based on Nozzle Arrangement during Continuous Casting (Steel Research International, 2024)
9. 💡 A Computational Fluid Dynamics‐Thermodynamics Coupled Approach to Simulate Desulfurization in Ladle Furnace Based on Interface Equilibrium Assumption (Steel Research International, 2023)
10. 💡 A Computational Fluid Dynamics‐Thermodynamics Coupled Approach to Simulate Desulfurization in Ladle Furnace Based on Interface Equilibrium Assumption (Steel Research International, 2023)
11. 🔍 Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel (Journal of Iron and Steel Research Internat

Conclusion

Qing Liu’s impressive research background, academic achievements, and leadership roles make him an outstanding candidate for the Best Researcher Award. While there are areas for improvement, his strengths and contributions to the field of metallurgical engineering and intelligent manufacturing demonstrate his eligibility for this prestigious award.

Şeyma Teberik | Eartquake | Women Researcher Award

Dr. Şeyma Teberik | Eartquake| Women Researcher Award

 student, Civil Engineering, Turkey

Şeyma Teberik is a multifaceted professional, combining her expertise as a civil engineer with her passion for 2D animation. Born in 1993 in Niğde, Turkey, she has established herself as a skilled geotechnical-earthquake engineer, structure engineer, and content producer. Her unique blend of technical and artistic skills makes her an asset in her field.

Profile

orcid

Education 🎓

Licence Degree in Civil Engineering from Nigde Omer Halisdemir University, Faculty of Engineering (2011-2015)  PhD student in Civil Engineering at Nigde Omer Halisdemir University, Faculty of Engineering (2019-present)

Experience 🧪

Civil Engineer and 2D Animator Artist  Geotechnical-Earthquake Engineer (DeepSoil, Plaxis, SeismoMatch)  Structure Engineer (Sap2000, Etabs)  Content Producer (Canva) Visual Arts Educator

Awards & Honors🏆

Unfortunately, no specific awards or honors are mentioned in the provided information. However, Şeyma Teberik’s diverse skill set, research experience, and education suggest that she may be a recipient of recognition or awards in her field.

Research Focus 🔍

Geotechnical-Earthquake Engineering  Structural Analysis and Design  2D Animation and Visual Arts  Civil Engineering and Construction

Publications📚

1. 📊 “Scaling of a Prototype Pile Raft Foundation System to a Small Laboratory Scale Model and Investigation of Structure-Pile-Soil Interaction by Numerical Analysis Method” (TUMTMK, 2023)
2. 🌉 “COMPARISON OF NUMERICAL ANALYSIS OF A SINGLE-SPAN STEEL PROTOTYPE STRUCTURE AND A SCALE MODEL STRUCTURE UNDER THE EFFECT OF SEISMIC LOADS” (KONJES, 2023)
3. 📈 “Scaling of a Single Span Steel Prototype Structure to a Small Model Structure and Experimental Investigation of the Model and Comparison of the Results with Numerical Environment Data” (TUMTMK, 2023)
4. 🌈 “Use of Adjustable Mass Dampers and Ground Effect” (TUMTMK, 2019)

Conclusion

Şeyma Teberik’s unique blend of civil engineering and 2D animation skills, research experience, and publication record make her a strong candidate for the Best Researcher Award. While there are areas for improvement, her strengths and achievements demonstrate her potential to make a significant impact in her field.

Assoc. Prof. Dr. Xingwang Liu | Structural Detection | Best Researcher Award

Assoc. Prof. Dr. Xingwang Liu | Structural Detection | Best Researcher Award

Hebei Agricultural University, College of Science and Technology, China

Assoc. Prof. Dr. Xingwang Liu is a distinguished researcher and academic with expertise in steel structures, modular structures, and structural detection. With a strong educational background and extensive research experience, he has established himself as a leading expert in his field. His research focuses on developing innovative solutions for structural reinforcement and evaluation, with a strong commitment to advancing the field of civil engineering.

Profile

orcid

Education 🎓

Assoc. Prof. Dr. Xingwang Liu’s educational background includes a Master’s degree in Civil Engineering from Hebei Agricultural University, College of Urban and Rural Construction (2012-2013). This academic foundation has provided him with a comprehensive understanding of construction principles, urban planning, and rural development.

Experience 🧪

Assoc. Prof. Dr. Xingwang Liu’s research experience spans over a decade, with a focus on steel structure, modular structure, structural detection, reinforcement, and evaluation. As Department Chair at Hebei Agricultural University, College of Science and Technology (2013-Present), he has led numerous research projects, collaborated with international experts, and mentored students in the field of civil engineering.

Awards & Honors🏆

Although specific awards and honors are not listed,Assoc. Prof. Dr. Xingwang Liu’s extensive research experience, academic achievements, and leadership roles suggest that he may have received recognition for his contributions to the field of civil engineering.

Research Focus 🔍

Steel structure  Modular structure  Structural detection Reinforcement and evaluation  Developing innovative solutions for structural reinforcement and evaluation

Publications📚

Conclusion

Based on the provided information, the researcher demonstrates a strong foundation in civil engineering and construction, extensive research experience, and leadership skills. However, to further strengthen their case for the Best Researcher Award, it would be beneficial to highlight their publication record, awards and honors, and international collaborations.

Vítor Gomes | Fatigue | Best Researcher Award

Dr. Vítor Gomes | Fatigue | Best Researcher Award

Vítor M. G. Gomes, Faculty of Engineering of the University of Porto, Portugal

Vítor Gomes is a mechanical engineer specializing in fatigue analysis, structural design, and computational simulations. He holds a PhD in Mechanical Engineering from the Faculty of Engineering at the University of Porto (FEUP), focusing on fatigue performance methodologies for railway suspension systems. His expertise spans finite element analysis (FEA), 3D modeling, and programming, with proficiency in ANSYS, SolidWorks, Python, and C++. Over the years, Vítor has contributed to the development of railway rolling stock, robotic mechanisms, and material characterization through research and industry collaborations. His work includes project management, consulting, and supervising academic research. Currently, he serves as a Research and Development Engineer, optimizing production processes for electric motor components. He has been actively involved in EU-funded railway innovation projects and has authored several scientific papers. Passionate about engineering advancements, Vítor continues to shape the future of mechanical design and railway technology.

Profile.

orcid

🎓 Education 

PhD in Mechanical Engineering (2019-2023) – FEUP Thesis: “A Methodology for Fatigue Performance of Leaf Springs Suspensions for Freight Wagons” Dissertation: “Numerical Analysis of the Influence of Taper on Strength of Adhesively Bonded Joints” Project: “Design for a Friction Stir Spot Welding Machine” Master’s in Mechanical Engineering (2013-2016) – FCTUC Bachelor’s in Mechanical Engineering (2010-2013) – ISECVítor’s academic journey has focused on mechanical design, fatigue analysis, and railway structures. His research integrates computational simulations with experimental validation, contributing to innovative methodologies in mechanical engineering.

💼 Professional Experience 

🔧 Research & Development Engineer (2024 – Present) – WEG Europe Monitoring and statistical control of production and assembly processes for electric motors and components.

🔬 Research Engineer

Developed, assembled, and tested full-scale railway components. Conducted finite element analysis (FEA) and fatigue assessments. Supervised academic projects and authored scientific publications. Provided consulting services for railway design and engineering projects. Mechanical Design Engineer (2016 – 2017) – TulaLabs Designed vehicle structures, robotic mechanisms, and air-compressed distribution networks. Created technical drawings and reports for engineering projects. 🎓 Intern Assistant Engineer (2014) – WEG Europe Assisted in mechanical design and fatigue testing.

🏆 Awards & Honors 

🇵🇹 DB Rail Academy (2023) – Principles of Bogie Technology Certification 🇪🇺 EN 15085 Certification (2023) – Railway Welding of Vehicles and Components 📜 Product Management Certifications (2024-2025) – Agile Methodologies & Applications to Funded Projects 🔧 Computer & Programming Certifications (2021) – Python, C++, VBA  Ordem dos Engenheiros (2015) – Ethics & Professional Deontology

🔍 Research Focus 

Vítor’s research revolves around fatigue performance, finite element analysis (FEA), and mechanical design, particularly in railway engineering. His PhD focused on fatigue behavior of leaf springs in freight wagons, contributing to safer and more efficient railway suspension systems. He specializes in computational simulations for fatigue, welded joints, and bolted connections, utilizing software like ANSYS, LS-DYNA, and Simpack. His work extends to structural analysis of railway rolling stock, including bogies, wagon platforms, and auxiliary equipment supports. He actively participates in EU-funded projects such as Smart Wagons, Train Solutions, and Ferrovia 4.0, advancing railway innovation through research and consulting.

Publications

Gomes, V. M. G. et al. (2025) Full-Range Probabilistic Fatigue Modelling of 51CrV4 Steel of Parabolic Leaf Springs of Railway Rolling StockMetals (Under Review)

Gomes, V. M. G. et al. (2018) Fatigue Assessment of a Rail Profile under Shuttle Moving LoadsNEDCON Project Report

Carlos, (2020) Fatigue Behavior of Cold Roll-Formed Z-Rails for Rack StructuresMaster Dissertation, FEUP

Silva, Lucas (2020) Monotonic and Fatigue Behaviour of Double Shear Bolted JointsMaster Dissertation, FEUP

Correia, Maria João (2019) Fatigue Behaviour of Cold-Rolled Profiles: Simulation and Characterization StudiesMaster Dissertation, FEUP

Conclusion

Vítor Gomes is a strong candidate for the Best Researcher Award in fatigue analysis and structural durability. His academic background, technical expertise, and research contributions align well with the award criteria. However, enhancing his publication record, international collaborations, and industrial impact would further solidify his standing as a leading researcher in this field.

 

Vladimír Chmelko | Fatigue of materials | Best Researcher Award

Prof. Dr. Vladimír Chmelko | Fatigue of materials | Best Researcher Award

head of Institute of Applied mechanics & Mechatronics at Slovak University of Technology in Bratislava, Slovakia

Vladimír Chmelko is a professor at the Slovak University of Technology in Bratislava, specializing in applied mechanics and mechatronics. He has held positions as an assistant professor (2007–2014), head of the department (2017–present), and head of the Institute of Applied Mechanics and Mechatronics (since 2020). He earned his PhD in applied mechanics and has contributed to over 100 publications, 13 indexed papers, and 170+ citations. His expertise includes fatigue analysis, structural integrity, and mechanical diagnostics. He is a member of prestigious societies like the European Structural Integrity Society and the European Society of Experimental Mechanics.

Publication Profile

orcid

Education 🎓📚

PhD in Applied Mechanics (2003–2006) from the Slovak University of Technology in Bratislava, focusing on fatigue life theory. Completed additional pedagogical education (1997–1999) with an international ING-PAED IGIP degree in 2005. Earned a Master’s in Applied Mechanics (1983–1988) with a thesis on FEM-based contact task solutions. Undertook concurrent pedagogical education (1986–1988). Secondary education with a baccalaureate from Gymnasium Ivana Horvátha (1979–1983). Primary education completed in 1979.

Experience 🏫🔍

University professor since 1990 at the Slovak University of Technology in Bratislava. Served as an assistant professor (2007–2014), head of the department (2017–present), and head of the Institute of Applied Mechanics and Mechatronics (since 2020). PhD student at the Slovak Academy of Sciences (1988–1990). Member of scientific committees for international conferences like ICSI, VAL, WMVC, and ECF. Published over 100 research papers, presented in 30+ international conferences, and received over 170 citations. Actively involved in industry-funded projects, securing over €1M in research funding.

Awards and Honors 🏆🥇

Received two publication awards from the Czech Gas & Oil Association (2016, 2017) and one from the Slovak Gas & Oil Association (2011). Holds three industrial utility models. Member of the European Structural Integrity Society and the European Society of Experimental Mechanics. Key contributor to major industry projects, including gas safety monitoring, fatigue diagnostics, and 3D-printed metal component analysis. Led multiple research projects in structural integrity, corrosion monitoring, and pipeline safety.

Research Focus 🔬⚙️

Specializes in applied mechanics, structural integrity, fatigue life prediction, and mechanical diagnostics. His research spans fatigue damage evaluation, pipeline safety, corrosion-fatigue interactions, and gas safety monitoring. Conducted studies on oscillation sources in mechanical systems and developed advanced fatigue assessment methods. Worked on multiaxial fatigue analysis of 3D-printed metal components and bridge cable diagnostics. Led projects on material characterization, trailer suspension development, and operational life prediction of power equipment components.

Publications 📖

Analysis of Static and Cyclic Properties of 316L and AlSi10Mg in Conventional Casting and Additive Manufacturing

Conclusion

Dr. Vladimír Chmelko is a highly suitable candidate for the Best Researcher Award, given his expertise in fatigue of materials, structural integrity, and mechanical engineering, coupled with a strong academic and industrial research background. His leadership in research projects, publications, and international scientific engagement positions him as a key contributor to advancements in applied mechanics and fatigue diagnostics. Strengthening his citation impact and global collaborations could further elevate his research influence.

Kangming Chen | Fatigue performence of intersection joint | Best Researcher Award

Mr. Kangming Chen |  Fatigue performence of intersection joint | Best Researcher Award

No designation at College of Civil Eng, Fuzhou University Fuzhou, China

🛠️ Dr. Chen Kangming, PhD in Engineering, is a researcher and doctoral supervisor at Fuzhou University’s School of Civil Engineering. Specializing in steel-concrete composite structures and bridge fatigue, he has led 5 vertical and 40+ horizontal projects. Dr. Chen has published over 60 academic papers, with 40+ indexed in SCI/EI, obtained 30+ patents, and received Fujian Science and Technology Progress Awards (2nd and 3rd prizes).

Profile

scopus

Education🎓

PhD in Bridge Engineering (2010–2013): Nagasaki University, Japan.Master’s in Bridge and Tunnel Engineering (2007–2010): Fuzhou University.Bachelor’s in Civil Engineering (2003–2007): Fuzhou University.

Experience👨‍🏫

Researcher, Fuzhou University (2023–present). Associate Researcher, Fuzhou University (2017–2023). Assistant Researcher, Fuzhou University (2013–2017).

Awards and Honors🏆

2020: Fujian Provincial Science and Technology Progress Award (2nd Prize) 2018: Fujian Provincial Science and Technology Progress Award (3rd Prize). 2021: National Postdoctoral Innovation Competition (4th place). 2023: Fuzhou University “Outstanding Young Teacher” Inspirational Award.

Research Focus🔬

Steel-concrete composite structures. Fatigue resistance and design of bridge structures. Durability improvement in prefabricated bridges. Optimization of steel box girders and anchorage designs.

Publication  Top Notes

Calculation method of out-of-plane elastic stability bearing capacity for concrete-filled steel tubular arch bridges with circular tube ribs

Journal: Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10), pp. 2930–2940.

Co-authors: Q.-W. Huang, Q.-X. Wu, B.-C. Chen, Z.-W. Ye.

Focus: Analytical method for elastic stability in CFST arch bridges.

Simplified calculation method for suspension bridge deck system under safety limit conditions of suspender fracture

Journal: China Civil Engineering Journal, 2024, 57(10), pp. 57–70.

Co-authors: Q. Wu, J. Luo, J. Lin.

Focus: Suspension bridge deck safety under suspender failure.

Flexural behavior of composite continuous girders with concrete-filled steel tubular truss chords

Journal: Journal of Jilin University (Engineering and Technology Edition), 2024, 54(6), pp. 1665–1676.

Co-authors: H.-H. Huang, Q.-X. Wu.

Focus: Investigates bending performance in CFST girders.

Bending Performance of a Prestressed Concrete Composite Girder Bridge with Steel Truss Webs

Journal: Applied Sciences (Switzerland), 2024, 14(11), 4822.

Co-authors: W. Wang, Y. Liu.

Focus: Experimental and theoretical studies on composite girder bridges.

Fatigue performance experiment of concrete-filled steel tubular-KK joint

Journal: Journal of Traffic and Transportation Engineering, 2024, 24(1), pp. 100–116.

Co-authors: Q.-X. Wu, J.-P. Luo, Y.-L. Yang, C.-Y. Miao, S. Nakamura.

Focus: Fatigue resistance in KK joints.

Research on the torsional behavior of composite girders with CSW-CFST truss chords

Journal: China Civil Engineering Journal, 2023, 56(10), pp. 93–126.

Co-authors: H. Huang, Q. Wu, S. Nakamura, J. Dong.

Focus: Examines torsion resistance in truss chord girders.

Equivalent static calculation method for CFST arch bridges considering hanger fracture dynamics

Journal: China Civil Engineering Journal, 2023, 56(6), pp. 63–74.

Co-authors: Q. Wu, J. Luo, H. Wang.

Focus: Static response analysis for hanger-damage scenarios.

Experimental investigation on composite girders with CSW-CFST truss chords subjected to combined flexure and torsion

Journal: Advances in Structural Engineering, 2023, 26(8), pp. 1468–1485.

Co-authors: H. Huang, Q. Wu, S. Nakamura.

Focus: Studies combined structural load effects.

Calculation Method for Flexural Bearing Capacity of Composite Girders with CFST Truss Chords

Journal: Journal of Bridge Engineering, 2023, 28(5), 04023019.

Co-authors: H. Huang, Q. Wu, S. Nakamura.

Focus: Provides a simplified flexural capacity model for girders.

Fatigue Performance Test and Finite-Element Analysis of CFST K-Joints

Journal: Journal of Bridge Engineering, 2023, 28(3), 04023003.

Co-authors: Q. Wu, H. Huang, Q. Zheng, S. Nakamura.

Focus: Combines experimental and computational methods to study joint fatigue.

Conclusion

Dr. Chen Kangming’s remarkable achievements in bridge engineering, steel-concrete composite structures, and fatigue resistance research make him an excellent candidate for the Best Researcher Award. His extensive research portfolio, innovative contributions, and academic leadership set him apart. Strengthening his global presence, interdisciplinary efforts, and public outreach could elevate his profile further, aligning with the award’s standards for exemplary researchers.

Yasmeen Obaidat | Structural eng | Best Researcher Award

Prof. Yasmeen Obaidat | Structural eng | Best Researcher Award

Professor at ordan university of science and technology, Jordan

Associate Professor of Civil Engineering at Jordan University of Science & Technology (JUST). 📚 Earned a Ph.D. from Lund University, Sweden (2011), and MSc/BSc from JUST. 🏗️ Expert in structural retrofitting, nonlinear finite element modeling, and AI applications in civil engineering. 🌍 Active researcher with 40+ publications and contributor to academic growth at JUST and Yarmouk University. 🎓 Dedicated mentor, supervisor, and conference participant.

 

Publication Profile

scholar

Education🎓

Ph.D.: Civil Engineering, Structural Mechanics, Lund University, Sweden (2011). Dissertation: Structural retrofitting of concrete beams using FRP Licentiate: Structural Mechanics, Lund University, Sweden (2009). Thesis: Retrofitting reinforced concrete beams with CFRP. M.Sc.: Structural Engineering, JUST, Jordan (2007). Thesis: Retrofitting RC beams with composite laminates. B.Sc.: Structural Engineering, JUST, Jordan (2004).

Experience🧑‍🏫

Professor, Civil Engineering, JUST (2023-present). Associate Professor, Civil Engineering, JUST (2012-2019). Head of Civil Engineering Department, Yarmouk University (2012-2015). Assistant Professor, Civil Engineering, JUST and Yarmouk University. Established civil engineering labs and supervised 50+ undergrad projects.

Awards and Honors🏆

Member of Undergraduate Projects Committee, Jordanian Engineers Association (2019-present).  Instrumental in academic and research partnerships nationally and internationally.  Established civil engineering labs at Yarmouk University.  Significant contributions to faculty development at JUST and Yarmouk University.

Research Focus🔍 

Structural retrofitting and strengthening with FRP materials.  Nonlinear finite element modeling in civil engineering applications. AI integration in structural engineering solutions  Climatic design for sustainable civil engineering practices.  Published 40+ peer-reviewed articles and supervised MSc/PhD students.

Publication  Top Notes

“The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM”
📄 Composite Structures (2010), 92(6), pp. 1391–1398.
👀 Cited 369 times, this study investigates finite element modeling (FEM) techniques for retrofitted RC beams using CFRP.

“Retrofitting of reinforced concrete beams using composite laminates”
📄 Construction and Building Materials (2011), 25(2), pp. 591–597.
🔗 Cited 202 times, this article explores composite laminate retrofitting for RC beams, focusing on structural performance.

“Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading”
📄 Construction and Building Materials (2019), 198, pp. 313–322.
🌐 Cited 72 times, it examines innovative CFRP configurations for seismic retrofitting of RC joints.

“Evaluation of parameters of bond action between FRP and concrete”
📄 Journal of Composites for Construction (2013), 17(5), pp. 626–635.
📊 Cited 62 times, focuses on critical bond parameters affecting FRP-concrete interaction.

“Effect of olive waste (Husk) on behavior of cement paste”
📄 Case Studies in Construction Materials (2016), 5, pp. 19–25.
🌱 Cited 58 times, investigates the sustainable use of olive waste in cement paste formulations.

“Structural retrofitting of concrete beams using FRP-debonding issues”
📄 Doctoral Dissertation (2011).
📗 Cited 54 times, addresses challenges of FRP debonding in structural retrofitting applications.

“A new technique for repairing reinforced concrete columns”
📄 Journal of Building Engineering (2020), 30, 101256.
🏗️ Cited 44 times, proposes an innovative column repair method using CFRP.

“Non-linear finite-element investigation of the parameters affecting externally-bonded FRP flexural-strengthened RC beams”
📄 Results in Engineering (2020), 8, 100168.
🖥️ Cited 42 times, presents a FEM analysis for flexural strengthening of RC beams.

“New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate”
📄 Construction and Building Materials (2020), 263, 120246.
🚧 Cited 40 times, this work details advanced anchorage solutions for NSM-CFRP systems.

“Performance of RC beam strengthened with NSM-CFRP strip under pure torsion: Experimental and numerical study”
📄 International Journal of Civil Engineering (2020), 18, pp. 585–593.
🔄 Cited 38 times, investigates the torsional strengthening of RC beams using NSM-CFRP strips.

“Shear strengthening of RC beams using near-surface mounted carbon fibre-reinforced polymers”
📄 Australian Journal of Structural Engineering (2019), 20(1), pp. 54–62.
✂️ Cited 38 times, explores NSM-CFRP applications for shear strength enhancement.

“Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programming and artificial neural network”
📄 Journal of Civil Engineering and Management (2020), 26(2), pp. 189–199.
🔥 Cited 27 times, uses AI to predict structural performance under heat stress.

“Case study on production of self-compacting concrete using white cement by-pass dust”
📄 Case Studies in Construction Materials (2018), 9, e00190.
🔍 Cited 27 times, highlights sustainable concrete production methods.

“Effect of aggregate size on the bond behavior between carbon fiber–reinforced polymer sheets and concrete”
📄 Journal of Materials in Civil Engineering (2019), 31(12), 04019295.
📐 Cited 24 times, examines how aggregate size impacts CFRP-concrete bond behavior.

“Effect of elevated temperature on the bond behavior between NSM-CFRP strips and recycled aggregate concrete”
📄 Construction and Building Materials (2020), 251, 118970.
🌡️ Cited 22 times, investigates bond integrity under heat exposure.

“Behavior of NSM CFRP reinforced concrete columns: Experimental and analytical work”
📄 Case Studies in Construction Materials (2021), 15, e00589.
🏗️ Cited 21 times, combines experimental and analytical approaches to column strengthening.

“A nonlinear finite element model for shear deficient heat-damaged concrete beams repaired using NSM CFRP strips”
📄 Construction and Building Materials (2018), 170, pp. 314–325.
🔨 Cited 21 times, provides a FEM-based solution for repairing heat-damaged beams.

“Repair of heat-damaged SCC cantilever beams using SNSM CFRP strips”
📄 Structures (2020), 24, pp. 151–162.
🔧 Cited 20 times, focuses on repairing SCC beams using advanced CFRP techniques.

“Innovative strengthening schemes of concrete cantilever beams using CFRP sheets: End anchorage effect”
📄 Construction and Building Materials (2018), 190, pp. 1215–1225.
💡 Cited 17 times, analyzes the end anchorage impact in CFRP-strengthened beams.

Conclusion

The candidate demonstrates exceptional qualifications and achievements in structural mechanics, retrofitting techniques, and civil engineering education. Their blend of academic excellence, research productivity, leadership roles, and mentorship makes them a strong contender for the Best Researcher Award. By focusing on enhancing global impact and diversifying research interests, they can further solidify their stature as a leading researcher.

JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Mr. JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Assist Prof Dr at National Korea Maritime and Ocean University, South Korea

Mr. JAEHYUK CHOI is a distinguished professor at Korea Maritime and Ocean University with expertise in mechanical and marine engineering. After earning his Ph.D. from Hokkaido University, Japan, he has contributed significantly to fields like combustion engineering, high-temperature hydrogen production, and space utilization engineering. His professional journey includes a blend of academia, research, and industry advisory roles, including postdoctoral work at the Korea Atomic Energy Research Institute and advisory roles for Korea’s Ministry of Ocean and Fisheries. He has published extensively on air pollution control and hydrogen production modeling, contributing to global research initiatives.

Publication Profile

scopus

Education 🎓

Ph.D. in Mechanical Science (2005) – Hokkaido University, Japan (Advisor: Prof. Osamu Fujita) M.S. in Marine Engineering (2000) – Korea Maritime University, Korea (Advisor: Prof. Seok-Hun Yoon) B.S. in Marine Engineering (1996) – Korea Maritime University, Korea His educational journey has provided him with a robust foundation in mechanical and marine engineering, focused on areas such as combustion, fluid flow, and hydrogen production. The combination of Japanese and Korean maritime expertise enables him to develop cutting-edge models for air pollution control, combustion technologies, and high-temperature electrolysis, contributing to cleaner maritime operations. 🌐🌬️🚢

Experience 👨‍✈️

Naval Officer – 1996-1998 (Navy R.O.T.C 41, Korea) Researcher – 2000-2001 (Korea Maritime University) Research Student – 2001 (Hokkaido University, Japan Postdoctoral Researcher – 2005-2007 (Korea Atomic Energy Research Institute)  BK21 Assistant Professor – 2007-2009 (Seoul National University)  Assistant/Associate/Professor – 2009-present (Korea Maritime and Ocean University) Policy Advisory Council – 2017-2019 (Ministry of Ocean and Fisheries)  Visiting Scholar – 2019-2021 (University of Missouri) Mr. JAEHYUK CHOI has a rich professional background combining military service, academic research, and advisory roles. His international experience includes collaborations in Japan and the United States, broadening his expertise in nuclear hydrogen and marine engineering. 🛠️🌍

Awards and Honors🏆

Minister Citation – Ministry of Ocean and Fisheries (2018) Best Teacher Award – Korea Maritime and Ocean University (2014, 2017) 2000 Outstanding Intellectuals – IBC (2016) Minister Citation – Ministry of Science, ICT, and Future Planning (2015) Certificate – President of KMOU (2013, 2014) Outstanding Paper – Japan Society of Mechanical Engineers (2007 Outstanding Paper – Korean Society of Marine Engineering (2006 Certificate – Korea Atomic Energy Research Institute (2006) Mr. JAEHYUK CHOI has received numerous awards, recognizing his contributions to marine engineering and academia. His dedication to research and teaching is reflected in prestigious ministerial citations and multiple best paper awards from renowned engineering societies. 🏅📚🎖️

Publication  Top Notes

Experimental and numerical studies on performance investigation of a diesel engine converted to run on LPG
Authors: Kuk Kim, J., Lee, W.-J., Ahn, E., Choi, J.-H.
Published in: Energy Conversion and Management, 2024, 321, 119091
Summary: This paper investigates the performance of diesel engines converted to operate on LPG (liquefied petroleum gas). The study combines both experimental and numerical methods to analyze fuel efficiency, emissions, and engine performance.

Review of noise and vibration reduction technologies in marine machinery: Operational insights and engineering experience
Authors: Park, M.-H., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Applied Ocean Research, 2024, 152, 104195
Summary: This review focuses on technologies aimed at reducing noise and vibration in marine machinery. The authors compile operational insights and lessons learned from engineering practices, emphasizing the importance of reducing environmental and human impacts in maritime applications.

Experimental evaluation of the significance of scheduled turbocharger reconditioning on marine diesel engine efficiency and exhaust gas emissions
Authors: Nyongesa, A.J., Park, M.-H., Lee, C.-M., Hur, J.-J., Lee, W.-J.
Published in: Ain Shams Engineering Journal, 2024, 15(8), 102845
Summary: This article presents an experimental study evaluating the impact of scheduled turbocharger reconditioning on the efficiency of marine diesel engines and associated exhaust gas emissions. The findings emphasize the importance of maintenance schedules for optimizing engine performance and reducing emissions.

Effects of natural gas admission location and timing on performance and emissions characteristics of LPDF two-stroke engine at low load
Authors: Nyongesa, A.J., Choi, J.-H., Lee, J.-W., Kim, J.-S., Lee, W.-J.
Published in: Case Studies in Thermal Engineering, 2024, 56, 104241
Summary: This paper investigates the effects of natural gas admission timing and location on the performance and emissions of low-pressure dual-fuel (LPDF) two-stroke engines. The results are crucial for optimizing engine operations under low-load conditions.

Estimation of greenhouse gas emissions from ships registered in South Korea based on activity data using the bottom-up approach
Authors: Yeo, S., Kuk Kim, J., Choi, J.-H., Lee, W.-J.
Published in: Journal of Engineering for the Maritime Environment, 2024
Summary: This study uses a bottom-up approach to estimate greenhouse gas emissions from ships registered in South Korea. The authors focus on activity data, providing a detailed methodology for assessing emissions from maritime transportation.

LPG, Gasoline, and Diesel Engines for Small Marine Vessels: A Comparative Analysis of Eco-Friendliness and Economic Feasibility
Authors: Kim, J.K., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Energies, 2024, 17(2), 450
Summary: This article compares LPG, gasoline, and diesel engines for small marine vessels, focusing on their eco-friendliness and economic feasibility. The paper highlights LPG as a potential environmentally friendly alternative to traditional fuels.

Impact of K-H Instability on NO Emissions in N₂O Thermal Decomposition Using Premixed CH₄ Co-Flow Flames and Electric Furnace
Authors: Park, J., Kim, S., Yu, S., Choi, J.-H., Yoon, S.H.
Published in: Energies, 2024, 17(1), 96
Summary: This study examines the impact of Kelvin-Helmholtz (K-H) instability on nitrogen oxide (NO) emissions during nitrous oxide (N₂O) thermal decomposition in premixed methane co-flow flames. The findings contribute to understanding combustion instability’s role in emission characteristics.

Feasibility study on bio-heavy fuel as an alternative for marine fuel
Authors: Kim, J.-S., Choi, J.-H.
Published in: Renewable Energy, 2023, 219, 119543
Summary: This feasibility study explores the potential of bio-heavy fuel as a sustainable alternative to conventional marine fuels. The paper assesses the environmental and economic impacts of using bio-heavy fuel in maritime applications.

Corrigendum: Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9
Summary: The corrigendum addresses errors in a previously published article related to hydrogen mixture ratios and scavenging air temperature’s effects on two-stroke marine engine performance and emissions.

Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9, pp. 195–216

Conclusion

The candidate is highly suitable for the Best Researcher Award due to their comprehensive expertise, significant professional experience, and numerous accolades. Their research has substantial implications for environmental sustainability and technological advancement. By focusing on improving their publication output and fostering industry collaborations, the candidate can further solidify their impact and leadership in their field. Overall, the candidate’s strengths make them an exemplary choice for this prestigious award.

Jianzhi Li | Fiber sensing | Best Researcher Award

Prof. Jianzhi Li | Fiber sensing | Best Researcher Award

 professor at Shijiazhuang Tiedao University,  china

Jianzhi Li is a Professor at the Key Laboratory of Structural Health Monitoring and Control, Shijiazhuang Tiedao University, specializing in fiber sensing technology and structural health monitoring. 🌉 She earned her Ph.D. from Beijing Jiaotong University and later held an academic post at Osaka University, Japan. 🚄 Her work focuses on enhancing railway infrastructure safety through innovative sensing techniques. 📚 Jianzhi has published numerous SCI papers and authored several books. 🚀 Her groundbreaking contributions in the field have earned her multiple awards, cementing her status as a leading researcher in fiber optics and structural health.

Publication Profile

orcid

Education 🎓

Jianzhi Li earned her Ph.D. in Structural Diagnosis and Optimization from Beijing Jiaotong University in 2009. 📚 Her doctoral studies focused on identifying and solving complex structural challenges in engineering. 🌏 She further broadened her academic horizons by serving as an Associate Professor at Osaka University in Japan between 2014 and 2015. 🏛️ This role allowed her to collaborate internationally and enhance her expertise in fiber optic sensing technology. ✨ Throughout her education, she gained deep insights into the intersections of structural health and smart material technologies, which now form the cornerstone of her research endeavors.

Experience 🏢 

Jianzhi Li currently serves as a Professor at Shijiazhuang Tiedao University’s Key Laboratory of Structural Health Monitoring and Control. 🚇 She has led several high-impact projects, particularly in fiber optic sensing and structural health monitoring for railways and bridges. 🌉 During 2014–2015, she was an Associate Professor at Osaka University, contributing to international collaborations. 📊 With over 20 patents to her name and numerous published works in prestigious journals, her experience spans industry-relevant research and cutting-edge academic advancements. 💼 She also leads the China National Key Research and Development Program, contributing to the enhancement of railway infrastructure safety.

Awards and Honors  🏆

Jianzhi Li has received numerous awards, including the First Prize for Technological Invention in Hebei Province. 🌟 She was recognized with the “Best Paper” award at the 6th International Conference on Optoelectronic Sensing. 🎖️ Her outstanding research contributions have earned her prestigious honors such as the Hebei Outstanding Youth Talent Award and a place in the Hebei 333 Talent Program. 📜 She has authored three books, including an internationally recognized English-language textbook, and her innovative work in fiber sensing and structural health has placed her among the top researchers in China. 🌍 Her membership in the Chinese Optical Society and other professional groups reflects her impact on the scientific community.

Research Focus🔬

Jianzhi Li’s research is centered on fiber optic sensing technologies and structural health monitoring. 🚇 Her work addresses critical infrastructure challenges, including heavy-duty railway bridges and roadbeds. 🔧 She has been instrumental in advancing fiber-based sensing systems for monitoring railway hazards and enhancing safety through predictive detection. 🛰️ Her research extends to smart materials and their applications in dynamic environments, focusing on the early detection of structural anomalies. 🚀 Jianzhi’s contributions are practical and forward-looking, pushing the boundaries of electromagnetic and optical sensing in engineering, leading to the development of more robust and resilient civil structures.

Publication  Top Notes

Evaluation of Concrete Carbonation Based on a Fiber Bragg Grating Sensor
📅 Published: December 2023
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi15010029
Contributors: Jianzhi Li, Haiqun Yang, Handong Wu

This paper introduces a novel approach for monitoring concrete carbonation using Fiber Bragg Grating (FBG) sensors, a crucial method for assessing structural durability.

A Long-Term Monitoring Method of Corrosion Damage of Prestressed Anchor Cable
📅 Published: March 2023
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi14040799
Contributors: Jianzhi Li, Chen Wang, Yiyao Zhao

This research presents a long-term monitoring technique for detecting corrosion in prestressed anchor cables, improving infrastructure safety and longevity.

A Combined Positioning Method Used for Identification of Concrete Cracks
📅 Published: November 2021
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi12121479
Contributors: Jianzhi Li, Bohao Shen, Junjie Wang

This paper discusses a hybrid method for accurately identifying concrete cracks, advancing structural health monitoring.

A Spiral Distributed Monitoring Method for Steel Rebar Corrosion
📅 Published: November 2021
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi12121451
Contributors: Jianzhi Li, Yiyao Zhao, Junjie Wang

Conclusion

Professor Jianzhi Li stands out as a strong candidate for the Best Researcher Award due to her exemplary research contributions, innovative spirit, and recognized leadership in the field of fiber sensing and structural health monitoring. Her achievements reflect not only her commitment to advancing science and technology but also her potential to further influence the field. With targeted improvements in professional engagement and industry collaboration, she could amplify her impact even more.