Kangming Chen | Fatigue performence of intersection joint | Best Researcher Award

Mr. Kangming Chen |  Fatigue performence of intersection joint | Best Researcher Award

No designation at College of Civil Eng, Fuzhou University Fuzhou, China

🛠️ Dr. Chen Kangming, PhD in Engineering, is a researcher and doctoral supervisor at Fuzhou University’s School of Civil Engineering. Specializing in steel-concrete composite structures and bridge fatigue, he has led 5 vertical and 40+ horizontal projects. Dr. Chen has published over 60 academic papers, with 40+ indexed in SCI/EI, obtained 30+ patents, and received Fujian Science and Technology Progress Awards (2nd and 3rd prizes).

Profile

scopus

Education🎓

PhD in Bridge Engineering (2010–2013): Nagasaki University, Japan.Master’s in Bridge and Tunnel Engineering (2007–2010): Fuzhou University.Bachelor’s in Civil Engineering (2003–2007): Fuzhou University.

Experience👨‍🏫

Researcher, Fuzhou University (2023–present). Associate Researcher, Fuzhou University (2017–2023). Assistant Researcher, Fuzhou University (2013–2017).

Awards and Honors🏆

2020: Fujian Provincial Science and Technology Progress Award (2nd Prize) 2018: Fujian Provincial Science and Technology Progress Award (3rd Prize). 2021: National Postdoctoral Innovation Competition (4th place). 2023: Fuzhou University “Outstanding Young Teacher” Inspirational Award.

Research Focus🔬

Steel-concrete composite structures. Fatigue resistance and design of bridge structures. Durability improvement in prefabricated bridges. Optimization of steel box girders and anchorage designs.

Publication  Top Notes

Calculation method of out-of-plane elastic stability bearing capacity for concrete-filled steel tubular arch bridges with circular tube ribs

Journal: Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10), pp. 2930–2940.

Co-authors: Q.-W. Huang, Q.-X. Wu, B.-C. Chen, Z.-W. Ye.

Focus: Analytical method for elastic stability in CFST arch bridges.

Simplified calculation method for suspension bridge deck system under safety limit conditions of suspender fracture

Journal: China Civil Engineering Journal, 2024, 57(10), pp. 57–70.

Co-authors: Q. Wu, J. Luo, J. Lin.

Focus: Suspension bridge deck safety under suspender failure.

Flexural behavior of composite continuous girders with concrete-filled steel tubular truss chords

Journal: Journal of Jilin University (Engineering and Technology Edition), 2024, 54(6), pp. 1665–1676.

Co-authors: H.-H. Huang, Q.-X. Wu.

Focus: Investigates bending performance in CFST girders.

Bending Performance of a Prestressed Concrete Composite Girder Bridge with Steel Truss Webs

Journal: Applied Sciences (Switzerland), 2024, 14(11), 4822.

Co-authors: W. Wang, Y. Liu.

Focus: Experimental and theoretical studies on composite girder bridges.

Fatigue performance experiment of concrete-filled steel tubular-KK joint

Journal: Journal of Traffic and Transportation Engineering, 2024, 24(1), pp. 100–116.

Co-authors: Q.-X. Wu, J.-P. Luo, Y.-L. Yang, C.-Y. Miao, S. Nakamura.

Focus: Fatigue resistance in KK joints.

Research on the torsional behavior of composite girders with CSW-CFST truss chords

Journal: China Civil Engineering Journal, 2023, 56(10), pp. 93–126.

Co-authors: H. Huang, Q. Wu, S. Nakamura, J. Dong.

Focus: Examines torsion resistance in truss chord girders.

Equivalent static calculation method for CFST arch bridges considering hanger fracture dynamics

Journal: China Civil Engineering Journal, 2023, 56(6), pp. 63–74.

Co-authors: Q. Wu, J. Luo, H. Wang.

Focus: Static response analysis for hanger-damage scenarios.

Experimental investigation on composite girders with CSW-CFST truss chords subjected to combined flexure and torsion

Journal: Advances in Structural Engineering, 2023, 26(8), pp. 1468–1485.

Co-authors: H. Huang, Q. Wu, S. Nakamura.

Focus: Studies combined structural load effects.

Calculation Method for Flexural Bearing Capacity of Composite Girders with CFST Truss Chords

Journal: Journal of Bridge Engineering, 2023, 28(5), 04023019.

Co-authors: H. Huang, Q. Wu, S. Nakamura.

Focus: Provides a simplified flexural capacity model for girders.

Fatigue Performance Test and Finite-Element Analysis of CFST K-Joints

Journal: Journal of Bridge Engineering, 2023, 28(3), 04023003.

Co-authors: Q. Wu, H. Huang, Q. Zheng, S. Nakamura.

Focus: Combines experimental and computational methods to study joint fatigue.

Conclusion

Dr. Chen Kangming’s remarkable achievements in bridge engineering, steel-concrete composite structures, and fatigue resistance research make him an excellent candidate for the Best Researcher Award. His extensive research portfolio, innovative contributions, and academic leadership set him apart. Strengthening his global presence, interdisciplinary efforts, and public outreach could elevate his profile further, aligning with the award’s standards for exemplary researchers.

Yasmeen Obaidat | Structural eng | Best Researcher Award

Prof. Yasmeen Obaidat | Structural eng | Best Researcher Award

Professor at ordan university of science and technology, Jordan

Associate Professor of Civil Engineering at Jordan University of Science & Technology (JUST). 📚 Earned a Ph.D. from Lund University, Sweden (2011), and MSc/BSc from JUST. 🏗️ Expert in structural retrofitting, nonlinear finite element modeling, and AI applications in civil engineering. 🌍 Active researcher with 40+ publications and contributor to academic growth at JUST and Yarmouk University. 🎓 Dedicated mentor, supervisor, and conference participant.

 

Publication Profile

scholar

Education🎓

Ph.D.: Civil Engineering, Structural Mechanics, Lund University, Sweden (2011). Dissertation: Structural retrofitting of concrete beams using FRP Licentiate: Structural Mechanics, Lund University, Sweden (2009). Thesis: Retrofitting reinforced concrete beams with CFRP. M.Sc.: Structural Engineering, JUST, Jordan (2007). Thesis: Retrofitting RC beams with composite laminates. B.Sc.: Structural Engineering, JUST, Jordan (2004).

Experience🧑‍🏫

Professor, Civil Engineering, JUST (2023-present). Associate Professor, Civil Engineering, JUST (2012-2019). Head of Civil Engineering Department, Yarmouk University (2012-2015). Assistant Professor, Civil Engineering, JUST and Yarmouk University. Established civil engineering labs and supervised 50+ undergrad projects.

Awards and Honors🏆

Member of Undergraduate Projects Committee, Jordanian Engineers Association (2019-present).  Instrumental in academic and research partnerships nationally and internationally.  Established civil engineering labs at Yarmouk University.  Significant contributions to faculty development at JUST and Yarmouk University.

Research Focus🔍 

Structural retrofitting and strengthening with FRP materials.  Nonlinear finite element modeling in civil engineering applications. AI integration in structural engineering solutions  Climatic design for sustainable civil engineering practices.  Published 40+ peer-reviewed articles and supervised MSc/PhD students.

Publication  Top Notes

“The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM”
📄 Composite Structures (2010), 92(6), pp. 1391–1398.
👀 Cited 369 times, this study investigates finite element modeling (FEM) techniques for retrofitted RC beams using CFRP.

“Retrofitting of reinforced concrete beams using composite laminates”
📄 Construction and Building Materials (2011), 25(2), pp. 591–597.
🔗 Cited 202 times, this article explores composite laminate retrofitting for RC beams, focusing on structural performance.

“Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading”
📄 Construction and Building Materials (2019), 198, pp. 313–322.
🌐 Cited 72 times, it examines innovative CFRP configurations for seismic retrofitting of RC joints.

“Evaluation of parameters of bond action between FRP and concrete”
📄 Journal of Composites for Construction (2013), 17(5), pp. 626–635.
📊 Cited 62 times, focuses on critical bond parameters affecting FRP-concrete interaction.

“Effect of olive waste (Husk) on behavior of cement paste”
📄 Case Studies in Construction Materials (2016), 5, pp. 19–25.
🌱 Cited 58 times, investigates the sustainable use of olive waste in cement paste formulations.

“Structural retrofitting of concrete beams using FRP-debonding issues”
📄 Doctoral Dissertation (2011).
📗 Cited 54 times, addresses challenges of FRP debonding in structural retrofitting applications.

“A new technique for repairing reinforced concrete columns”
📄 Journal of Building Engineering (2020), 30, 101256.
🏗️ Cited 44 times, proposes an innovative column repair method using CFRP.

“Non-linear finite-element investigation of the parameters affecting externally-bonded FRP flexural-strengthened RC beams”
📄 Results in Engineering (2020), 8, 100168.
🖥️ Cited 42 times, presents a FEM analysis for flexural strengthening of RC beams.

“New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate”
📄 Construction and Building Materials (2020), 263, 120246.
🚧 Cited 40 times, this work details advanced anchorage solutions for NSM-CFRP systems.

“Performance of RC beam strengthened with NSM-CFRP strip under pure torsion: Experimental and numerical study”
📄 International Journal of Civil Engineering (2020), 18, pp. 585–593.
🔄 Cited 38 times, investigates the torsional strengthening of RC beams using NSM-CFRP strips.

“Shear strengthening of RC beams using near-surface mounted carbon fibre-reinforced polymers”
📄 Australian Journal of Structural Engineering (2019), 20(1), pp. 54–62.
✂️ Cited 38 times, explores NSM-CFRP applications for shear strength enhancement.

“Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programming and artificial neural network”
📄 Journal of Civil Engineering and Management (2020), 26(2), pp. 189–199.
🔥 Cited 27 times, uses AI to predict structural performance under heat stress.

“Case study on production of self-compacting concrete using white cement by-pass dust”
📄 Case Studies in Construction Materials (2018), 9, e00190.
🔍 Cited 27 times, highlights sustainable concrete production methods.

“Effect of aggregate size on the bond behavior between carbon fiber–reinforced polymer sheets and concrete”
📄 Journal of Materials in Civil Engineering (2019), 31(12), 04019295.
📐 Cited 24 times, examines how aggregate size impacts CFRP-concrete bond behavior.

“Effect of elevated temperature on the bond behavior between NSM-CFRP strips and recycled aggregate concrete”
📄 Construction and Building Materials (2020), 251, 118970.
🌡️ Cited 22 times, investigates bond integrity under heat exposure.

“Behavior of NSM CFRP reinforced concrete columns: Experimental and analytical work”
📄 Case Studies in Construction Materials (2021), 15, e00589.
🏗️ Cited 21 times, combines experimental and analytical approaches to column strengthening.

“A nonlinear finite element model for shear deficient heat-damaged concrete beams repaired using NSM CFRP strips”
📄 Construction and Building Materials (2018), 170, pp. 314–325.
🔨 Cited 21 times, provides a FEM-based solution for repairing heat-damaged beams.

“Repair of heat-damaged SCC cantilever beams using SNSM CFRP strips”
📄 Structures (2020), 24, pp. 151–162.
🔧 Cited 20 times, focuses on repairing SCC beams using advanced CFRP techniques.

“Innovative strengthening schemes of concrete cantilever beams using CFRP sheets: End anchorage effect”
📄 Construction and Building Materials (2018), 190, pp. 1215–1225.
💡 Cited 17 times, analyzes the end anchorage impact in CFRP-strengthened beams.

Conclusion

The candidate demonstrates exceptional qualifications and achievements in structural mechanics, retrofitting techniques, and civil engineering education. Their blend of academic excellence, research productivity, leadership roles, and mentorship makes them a strong contender for the Best Researcher Award. By focusing on enhancing global impact and diversifying research interests, they can further solidify their stature as a leading researcher.

JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Mr. JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Assist Prof Dr at National Korea Maritime and Ocean University, South Korea

Mr. JAEHYUK CHOI is a distinguished professor at Korea Maritime and Ocean University with expertise in mechanical and marine engineering. After earning his Ph.D. from Hokkaido University, Japan, he has contributed significantly to fields like combustion engineering, high-temperature hydrogen production, and space utilization engineering. His professional journey includes a blend of academia, research, and industry advisory roles, including postdoctoral work at the Korea Atomic Energy Research Institute and advisory roles for Korea’s Ministry of Ocean and Fisheries. He has published extensively on air pollution control and hydrogen production modeling, contributing to global research initiatives.

Publication Profile

scopus

Education 🎓

Ph.D. in Mechanical Science (2005) – Hokkaido University, Japan (Advisor: Prof. Osamu Fujita) M.S. in Marine Engineering (2000) – Korea Maritime University, Korea (Advisor: Prof. Seok-Hun Yoon) B.S. in Marine Engineering (1996) – Korea Maritime University, Korea His educational journey has provided him with a robust foundation in mechanical and marine engineering, focused on areas such as combustion, fluid flow, and hydrogen production. The combination of Japanese and Korean maritime expertise enables him to develop cutting-edge models for air pollution control, combustion technologies, and high-temperature electrolysis, contributing to cleaner maritime operations. 🌐🌬️🚢

Experience 👨‍✈️

Naval Officer – 1996-1998 (Navy R.O.T.C 41, Korea) Researcher – 2000-2001 (Korea Maritime University) Research Student – 2001 (Hokkaido University, Japan Postdoctoral Researcher – 2005-2007 (Korea Atomic Energy Research Institute)  BK21 Assistant Professor – 2007-2009 (Seoul National University)  Assistant/Associate/Professor – 2009-present (Korea Maritime and Ocean University) Policy Advisory Council – 2017-2019 (Ministry of Ocean and Fisheries)  Visiting Scholar – 2019-2021 (University of Missouri) Mr. JAEHYUK CHOI has a rich professional background combining military service, academic research, and advisory roles. His international experience includes collaborations in Japan and the United States, broadening his expertise in nuclear hydrogen and marine engineering. 🛠️🌍

Awards and Honors🏆

Minister Citation – Ministry of Ocean and Fisheries (2018) Best Teacher Award – Korea Maritime and Ocean University (2014, 2017) 2000 Outstanding Intellectuals – IBC (2016) Minister Citation – Ministry of Science, ICT, and Future Planning (2015) Certificate – President of KMOU (2013, 2014) Outstanding Paper – Japan Society of Mechanical Engineers (2007 Outstanding Paper – Korean Society of Marine Engineering (2006 Certificate – Korea Atomic Energy Research Institute (2006) Mr. JAEHYUK CHOI has received numerous awards, recognizing his contributions to marine engineering and academia. His dedication to research and teaching is reflected in prestigious ministerial citations and multiple best paper awards from renowned engineering societies. 🏅📚🎖️

Publication  Top Notes

Experimental and numerical studies on performance investigation of a diesel engine converted to run on LPG
Authors: Kuk Kim, J., Lee, W.-J., Ahn, E., Choi, J.-H.
Published in: Energy Conversion and Management, 2024, 321, 119091
Summary: This paper investigates the performance of diesel engines converted to operate on LPG (liquefied petroleum gas). The study combines both experimental and numerical methods to analyze fuel efficiency, emissions, and engine performance.

Review of noise and vibration reduction technologies in marine machinery: Operational insights and engineering experience
Authors: Park, M.-H., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Applied Ocean Research, 2024, 152, 104195
Summary: This review focuses on technologies aimed at reducing noise and vibration in marine machinery. The authors compile operational insights and lessons learned from engineering practices, emphasizing the importance of reducing environmental and human impacts in maritime applications.

Experimental evaluation of the significance of scheduled turbocharger reconditioning on marine diesel engine efficiency and exhaust gas emissions
Authors: Nyongesa, A.J., Park, M.-H., Lee, C.-M., Hur, J.-J., Lee, W.-J.
Published in: Ain Shams Engineering Journal, 2024, 15(8), 102845
Summary: This article presents an experimental study evaluating the impact of scheduled turbocharger reconditioning on the efficiency of marine diesel engines and associated exhaust gas emissions. The findings emphasize the importance of maintenance schedules for optimizing engine performance and reducing emissions.

Effects of natural gas admission location and timing on performance and emissions characteristics of LPDF two-stroke engine at low load
Authors: Nyongesa, A.J., Choi, J.-H., Lee, J.-W., Kim, J.-S., Lee, W.-J.
Published in: Case Studies in Thermal Engineering, 2024, 56, 104241
Summary: This paper investigates the effects of natural gas admission timing and location on the performance and emissions of low-pressure dual-fuel (LPDF) two-stroke engines. The results are crucial for optimizing engine operations under low-load conditions.

Estimation of greenhouse gas emissions from ships registered in South Korea based on activity data using the bottom-up approach
Authors: Yeo, S., Kuk Kim, J., Choi, J.-H., Lee, W.-J.
Published in: Journal of Engineering for the Maritime Environment, 2024
Summary: This study uses a bottom-up approach to estimate greenhouse gas emissions from ships registered in South Korea. The authors focus on activity data, providing a detailed methodology for assessing emissions from maritime transportation.

LPG, Gasoline, and Diesel Engines for Small Marine Vessels: A Comparative Analysis of Eco-Friendliness and Economic Feasibility
Authors: Kim, J.K., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Energies, 2024, 17(2), 450
Summary: This article compares LPG, gasoline, and diesel engines for small marine vessels, focusing on their eco-friendliness and economic feasibility. The paper highlights LPG as a potential environmentally friendly alternative to traditional fuels.

Impact of K-H Instability on NO Emissions in N₂O Thermal Decomposition Using Premixed CH₄ Co-Flow Flames and Electric Furnace
Authors: Park, J., Kim, S., Yu, S., Choi, J.-H., Yoon, S.H.
Published in: Energies, 2024, 17(1), 96
Summary: This study examines the impact of Kelvin-Helmholtz (K-H) instability on nitrogen oxide (NO) emissions during nitrous oxide (N₂O) thermal decomposition in premixed methane co-flow flames. The findings contribute to understanding combustion instability’s role in emission characteristics.

Feasibility study on bio-heavy fuel as an alternative for marine fuel
Authors: Kim, J.-S., Choi, J.-H.
Published in: Renewable Energy, 2023, 219, 119543
Summary: This feasibility study explores the potential of bio-heavy fuel as a sustainable alternative to conventional marine fuels. The paper assesses the environmental and economic impacts of using bio-heavy fuel in maritime applications.

Corrigendum: Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9
Summary: The corrigendum addresses errors in a previously published article related to hydrogen mixture ratios and scavenging air temperature’s effects on two-stroke marine engine performance and emissions.

Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9, pp. 195–216

Conclusion

The candidate is highly suitable for the Best Researcher Award due to their comprehensive expertise, significant professional experience, and numerous accolades. Their research has substantial implications for environmental sustainability and technological advancement. By focusing on improving their publication output and fostering industry collaborations, the candidate can further solidify their impact and leadership in their field. Overall, the candidate’s strengths make them an exemplary choice for this prestigious award.

Jianzhi Li | Fiber sensing | Best Researcher Award

Prof. Jianzhi Li | Fiber sensing | Best Researcher Award

 professor at Shijiazhuang Tiedao University,  china

Jianzhi Li is a Professor at the Key Laboratory of Structural Health Monitoring and Control, Shijiazhuang Tiedao University, specializing in fiber sensing technology and structural health monitoring. 🌉 She earned her Ph.D. from Beijing Jiaotong University and later held an academic post at Osaka University, Japan. 🚄 Her work focuses on enhancing railway infrastructure safety through innovative sensing techniques. 📚 Jianzhi has published numerous SCI papers and authored several books. 🚀 Her groundbreaking contributions in the field have earned her multiple awards, cementing her status as a leading researcher in fiber optics and structural health.

Publication Profile

orcid

Education 🎓

Jianzhi Li earned her Ph.D. in Structural Diagnosis and Optimization from Beijing Jiaotong University in 2009. 📚 Her doctoral studies focused on identifying and solving complex structural challenges in engineering. 🌏 She further broadened her academic horizons by serving as an Associate Professor at Osaka University in Japan between 2014 and 2015. 🏛️ This role allowed her to collaborate internationally and enhance her expertise in fiber optic sensing technology. ✨ Throughout her education, she gained deep insights into the intersections of structural health and smart material technologies, which now form the cornerstone of her research endeavors.

Experience 🏢 

Jianzhi Li currently serves as a Professor at Shijiazhuang Tiedao University’s Key Laboratory of Structural Health Monitoring and Control. 🚇 She has led several high-impact projects, particularly in fiber optic sensing and structural health monitoring for railways and bridges. 🌉 During 2014–2015, she was an Associate Professor at Osaka University, contributing to international collaborations. 📊 With over 20 patents to her name and numerous published works in prestigious journals, her experience spans industry-relevant research and cutting-edge academic advancements. 💼 She also leads the China National Key Research and Development Program, contributing to the enhancement of railway infrastructure safety.

Awards and Honors  🏆

Jianzhi Li has received numerous awards, including the First Prize for Technological Invention in Hebei Province. 🌟 She was recognized with the “Best Paper” award at the 6th International Conference on Optoelectronic Sensing. 🎖️ Her outstanding research contributions have earned her prestigious honors such as the Hebei Outstanding Youth Talent Award and a place in the Hebei 333 Talent Program. 📜 She has authored three books, including an internationally recognized English-language textbook, and her innovative work in fiber sensing and structural health has placed her among the top researchers in China. 🌍 Her membership in the Chinese Optical Society and other professional groups reflects her impact on the scientific community.

Research Focus🔬

Jianzhi Li’s research is centered on fiber optic sensing technologies and structural health monitoring. 🚇 Her work addresses critical infrastructure challenges, including heavy-duty railway bridges and roadbeds. 🔧 She has been instrumental in advancing fiber-based sensing systems for monitoring railway hazards and enhancing safety through predictive detection. 🛰️ Her research extends to smart materials and their applications in dynamic environments, focusing on the early detection of structural anomalies. 🚀 Jianzhi’s contributions are practical and forward-looking, pushing the boundaries of electromagnetic and optical sensing in engineering, leading to the development of more robust and resilient civil structures.

Publication  Top Notes

Evaluation of Concrete Carbonation Based on a Fiber Bragg Grating Sensor
📅 Published: December 2023
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi15010029
Contributors: Jianzhi Li, Haiqun Yang, Handong Wu

This paper introduces a novel approach for monitoring concrete carbonation using Fiber Bragg Grating (FBG) sensors, a crucial method for assessing structural durability.

A Long-Term Monitoring Method of Corrosion Damage of Prestressed Anchor Cable
📅 Published: March 2023
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi14040799
Contributors: Jianzhi Li, Chen Wang, Yiyao Zhao

This research presents a long-term monitoring technique for detecting corrosion in prestressed anchor cables, improving infrastructure safety and longevity.

A Combined Positioning Method Used for Identification of Concrete Cracks
📅 Published: November 2021
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi12121479
Contributors: Jianzhi Li, Bohao Shen, Junjie Wang

This paper discusses a hybrid method for accurately identifying concrete cracks, advancing structural health monitoring.

A Spiral Distributed Monitoring Method for Steel Rebar Corrosion
📅 Published: November 2021
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi12121451
Contributors: Jianzhi Li, Yiyao Zhao, Junjie Wang

Conclusion

Professor Jianzhi Li stands out as a strong candidate for the Best Researcher Award due to her exemplary research contributions, innovative spirit, and recognized leadership in the field of fiber sensing and structural health monitoring. Her achievements reflect not only her commitment to advancing science and technology but also her potential to further influence the field. With targeted improvements in professional engagement and industry collaboration, she could amplify her impact even more.

Juan Bai | Materials and Structures | Women Researcher Award

Dr.  Queensland university of technology, Australia

Dr. Bai J. is an ARC DECRA Fellow and Lecturer at Queensland University of Technology, with a strong background in material physics and chemistry. Their research is centered on designing and synthesizing functional nanostructured materials for electrochemistry and energy conversion, particularly in fuel cells and electrocatalysis. Dr. Bai has published 24 papers in leading SCI journals such as Advanced Materials and ACS Energy Letters. Recognized for their contributions, they have received prestigious awards, including the Australian Research Council DECRA and Discovery Projects awards. Dr. Bai holds a Ph.D. from Shaanxi Normal University and has extensive expertise in electrochemical energy storage and conversion devices.

Professional Profiles:

 

🎓 Education

Feb. 2024 – Present:
ARC DECRA Fellow/Lecturer, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.Apr. 2020 – Jan. 2024:
Postdoc in Electrocatalysis, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.
Supervisors: Prof. Ziqi Sun, Jun MeiSep. 2016 – Jun. 2019:
Ph.D. in Material Physics and Chemistry, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China.
Supervisors: Prof. Yu Chen, Jinghui ZengSep. 2012 – Jun. 2015:
M.S. in Physical Chemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
Supervisors: Prof. Dongmei Sun, Yu Chen, Tianhong LuSep. 2008 – Jun. 2012:
B.S. in Science Education, Department of Applied Chemistry, Yuncheng University, Yuncheng, China.

🔬 Research Objectives

My research is centered on the design and synthesis of functional nanostructured materials for applications in electrochemistry and energy conversion devices. Key areas of focus include:Anodic and Cathodic Reactions of Fuel Cells: ORR, MOR, EOR, and FAORElectrocatalysts: Noble metal-based (Pt, Pd, Rh) nanoparticles for HER, OER, and NRRAs the first/co-first/corresponding author, I have published 24 papers in top-tier SCI Journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials.

🏆 Awards and Honors

2023: Australian Research Council Discovery Early Career Researcher Award (DECRA) – $448,407.002023: Australian Research Council Discovery Projects – $404,530.002018: National Scholarship for Graduate Students (Ph.D.)2017: Research Individual Award by Shaanxi Normal University2017: Ji-Xue Scholarship by Shaanxi Normal University2016: Yuan-Ding Scholarship by Shaanxi Normal University2015: Excellent Student Award by Nanjing Normal University

Strengths for the Award

  1. Extensive Research Experience: The candidate has a strong background in material physics and chemistry, with a focus on nanostructured materials and their applications in electrochemical energy conversion. This expertise is highly relevant to the award, as it demonstrates a deep understanding of a critical field in modern science.
  2. Publication Record: With 24 papers published in high-impact SCI journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials, the candidate has established herself as a leading researcher in her field. This prolific publication record underscores her ability to contribute original and significant research to the scientific community.
  3. Award and Recognition: The candidate has received prestigious awards, including the 2023 Australian Research Council Discovery Early Career Researcher Award (DECRA) and substantial research funding. These accolades reflect her recognized potential and achievements within the scientific community.
  4. Research Focus on Sustainability: The candidate’s work on electrocatalysts and fuel cells, especially in the context of sustainable energy, aligns with global priorities in renewable energy and environmental protection. This makes her research not only innovative but also socially and environmentally impactful.
  5. Professional Skills: The candidate has demonstrated a high level of expertise in experimental techniques, theoretical knowledge, and the use of advanced instrumentation. These skills are essential for conducting cutting-edge research in electrochemistry and material science.

Areas for Improvement

  1. Broader Impact and Outreach: While the candidate has an impressive academic and research background, there is limited information on her involvement in outreach activities, mentoring, or promoting women in science. Increasing visibility and engagement in these areas could enhance her candidacy for a Women Researcher Award, which often considers contributions beyond academic achievements.
  2. Interdisciplinary Collaboration: While the candidate’s research is highly specialized, further collaboration across disciplines could lead to broader applications of her work and increase its overall impact. Engaging in interdisciplinary projects or collaborations with industry could further elevate her profile.

 

✍️Publications Top Note :

Nanocatalysts for Electrocatalytic Oxidation of Ethanol
Authors: J. Bai, D. Liu, J. Yang, Y. Chen
Journal: ChemSusChem, 12(10), 2117-2132, 2019
Citations: 170
🧪 Focus: Ethanol oxidation using nanocatalysts.

Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers
Authors: G.R. Xu, J. Bai, L. Yao, Q. Xue, J.X. Jiang, J.H. Zeng, Y. Chen, J.M. Lee
Journal: ACS Catalysis, 7(1), 452-458, 2017
Citations: 147
🔋 Focus: Hydrogen evolution reaction.

Bimetallic Platinum–Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction
Authors: J. Bai, X. Xiao, Y.Y. Xue, J.X. Jiang, J.H. Zeng, X.F. Li, Y. Chen
Journal: ACS Applied Materials & Interfaces, 10(23), 19755-19763, 2018
Citations: 145
⚗️ Focus: Platinum-rhodium alloy for ethanol oxidation.

Atomically Ultrathin RhCo Alloy Nanosheet Aggregates for Efficient Water Electrolysis in Broad pH Range
Authors: Y. Zhao, J. Bai, X.R. Wu, P. Chen, P.J. Jin, H.C. Yao, Y. Chen
Journal: Journal of Materials Chemistry A, 7(27), 16437-16446, 2019
Citations: 143
🌊 Focus: Water electrolysis using RhCo alloy nanosheets.

Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts Toward Oxygen Reduction Reaction in Alkaline Media
Authors: Q. Xue, J. Bai, C. Han, P. Chen, J.X. Jiang, Y. Chen
Journal: ACS Catalysis, 8(12), 11287-11295, 2018
Citations: 133
🧪 Focus: Oxygen reduction reaction in alkaline media.

Polyethyleneimine Functionalized Platinum Superstructures: Enhancing Hydrogen Evolution Performance by Morphological and Interfacial Control
Authors: G.R. Xu, J. Bai, J.X. Jiang, J.M. Lee, Y. Chen
Journal: Chemical Science, 8(12), 8411-8418, 2017
Citations: 115
⚛️ Focus: Hydrogen evolution through platinum superstructures.

Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies
Authors: J. Bai, G.R. Xu, S.H. Xing, J.H. Zeng, J.X. Jiang, Y. Chen
Journal: ACS Applied Materials & Interfaces, 8(49), 33635-33641, 2016
Citations: 96
🔬 Focus: Rhodium nanosheet for catalytic applications.

Molybdenum‐Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution
Authors: J. Bai, J. Mei, T. Liao, Q. Sun, Z.G. Chen, Z. Sun
Journal: Advanced Energy Materials, 12(5), 2103247, 2022
Citations: 87
Focus: Oxygen evolution in cobalt.

One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction
Authors: S.H. Han, J. Bai, H.M. Liu, J.H. Zeng, J.X. Jiang, Y. Chen, J.M. Lee
Journal: ACS Applied Materials & Interfaces, 8(45), 30948-30955, 2016
Citations: 85
🌍 Focus: Catalytic reduction of hexavalent chromium.

Glycerol Oxidation Assisted Electrocatalytic Nitrogen Reduction: Ammonia and Glyceraldehyde Co-Production on Bimetallic RhCu Ultrathin Nanoflake Nanoaggregates
Authors: J. Bai, H. Huang, F.M. Li, Y. Zhao, P. Chen, P.J. Jin, S.N. Li, H.C. Yao, J.H. Zeng
Journal: Journal of Materials Chemistry A, 7(37), 21149-21156, 2019
Citations: 84

Conclusion

The candidate is exceptionally well-suited for the Women Researcher Award, given her extensive research experience, strong publication record, and recognized achievements in the field of electrochemistry and materials science. Her work is not only innovative but also highly relevant to global challenges, particularly in sustainable energy. To further strengthen her candidacy, the candidate might consider expanding her impact through outreach, mentoring, and interdisciplinary collaboration.

Morteza Akbari | Structural Control | Best Researcher Award

Mr. Gdańsk University of Technology, Poland

Morteza Akbari is a PhD student in Structural Engineering at Gdańsk University of Technology, Poland, specializing in structural control, earthquake engineering, and soil-structure interaction. He holds an MSc in Structural Engineering from Islamic Azad University, Iran, with a thesis on seismic control of tall buildings using semi-active friction tuned mass dampers. Morteza has published several journal and conference papers on advanced seismic control strategies, focusing on the reliability and optimization of structural control devices in buildings. His professional experience includes technical inspection roles in construction, and he has served as a reviewer for academic journals.

 

Professional Profiles:

scopus

🎓 Education

PhD Student: Structural Engineering, Gdańsk University of Technology, PolandThesis: Optimal design of structural control devices in buildings, including soil-structure interactionSupervisor: Prof. Robert JankowskiDuration: 2023-2027MSc. Structural Engineering: Islamic Azad University, Zahedan Branch, IranGPA: 15.82/20Thesis: Seismic Control of Tall Buildings Equipped with Semi-Active Friction Tuned Mass Damper Including Soil-Structure InteractionSupervisor: Dr. Sadegh EtedaliDuration: 2013-2016B.S. Civil Technology Engineering: Islamic Azad University, Birjand Branch, IranGPA: 16.24/20Duration: 2011-2013A.D. in Building General Works: Ibn Hossam Technical and Vocational University, Birjand, IranGPA: 14.39/20Duration: 2008-2010

🏅 Honor & Award

2016: Graded as an excellent thesis with a GPA of 4/4 (MSc) (18.5/20) Here’s a revised version of the content with headings and emojis to make it more engaging:

🎓 Education

PhD Student: Structural Engineering, Gdańsk University of Technology, PolandThesis: Optimal design of structural control devices in buildings, including soil-structure interactionSupervisor: Prof. Robert JankowskiDuration: 2023-2027MSc. Structural Engineering: Islamic Azad University, Zahedan Branch, IranGPA: 15.82/20Thesis: Seismic Control of Tall Buildings Equipped with Semi-Active Friction Tuned Mass Damper Including Soil-Structure InteractionSupervisor: Dr. Sadegh EtedaliDuration: 2013-2016B.S. Civil Technology Engineering: Islamic Azad University, Birjand Branch, IranGPA: 16.24/20Duration: 2011-2013A.D. in Building General Works: Ibn Hossam Technical and Vocational University, Birjand, IranGPA: 14.39/20Duration: 2008-2010

💼 Field of Interest

Structural ControlStructural ReliabilityEarthquake EngineeringSoil-Structure InteractionMachine Learning (ML)Finite Element Method

🛠️ Professional Skills

Engineering Software and Programming Languages:

MATLAB & SimulinkSeismoSignalAUTO CAD

Other Skills:

Microsoft Office

🏅 Honor & Award

2016: Graded as an excellent thesis with a GPA of 4/4 (MSc) (18.5/20)

🌐 Experience

Technical Inspector: Ready-mixed concrete company and construction company, Birjand and Mashhad, Iran (Full-time, 2017-2022)Surveyor: Housing foundation office and document registration office, Birjand, Iran (Part-time, 2017-2021)

✍️ Refereeing Experience

Reviewer: Structures Journal, Elsevier (2023-2024)Reviewer: Results in Engineering, Elsevier (2023-2024)

Strengths for the Award:

  1. Strong Academic Background:
    • Morteza Akbari is currently pursuing a PhD in Structural Engineering at Gdańsk University of Technology, with a focus on the optimal design of structural control devices in buildings, including soil-structure interaction. His academic journey also includes an MSc in Structural Engineering and a BSc in Civil Technology Engineering, demonstrating a solid foundation in the field.
  2. Specialization in Seismic Control and Soil-Structure Interaction:
    • His research work is deeply rooted in seismic control strategies, which is a critical area in structural engineering, particularly for earthquake-prone regions. His focus on soil-structure interaction further emphasizes his understanding of complex dynamics in structural design.
  3. Notable Publications:
    • Akbari has several publications in reputable journals, including Geomechanics and Engineering, Soil Dynamics and Earthquake Engineering, and the Journal of Earthquake and Tsunami. His research covers important topics such as friction-tuned mass dampers, failure probability in tall buildings, and advanced seismic control strategies.
  4. Collaborations with Renowned Researchers:
    • His work with respected supervisors like Prof. Robert Jankowski and Dr. Sadegh Etedali adds credibility to his research. Collaborating with leading experts in the field strengthens his profile as a researcher.
  5. Recognition and Awards:
    • Grading of his MSc thesis as excellent and his experience as a reviewer for journals like Structures and Results in Engineering demonstrate his academic rigor and recognition within the research community.
  6. Relevant Skill Set:
    • Proficiency in engineering software like MATLAB, Simulink, and SeismoSignal, as well as experience with programming languages, makes him technically adept in his research domain.

Areas for Improvement:

  1. Broader Impact of Research:
    • While Akbari’s research is specialized and impactful within structural control and seismic mitigation, expanding the scope to include more interdisciplinary applications or real-world case studies could enhance the broader relevance and applicability of his work.
  2. International Exposure and Collaborations:
    • Increasing international collaborations and exposure through conferences, joint research projects, or partnerships with global research institutions could further elevate his profile.
  3. Publication in High-Impact Journals:
    • While his current publications are impressive, targeting more high-impact journals in civil engineering or structural dynamics could increase the visibility and citation of his work.
  4. Diversification of Research Topics:
    • Exploring additional areas within structural engineering or integrating emerging technologies like AI and machine learning into his research could provide new insights and innovations.

 

 

✍️Publications Top Note :

. Advanced Seismic Control Strategies for Smart Base Isolation Buildings Utilizing Active Tendon and MR Dampers

Authors: Akbari, M., Zand, J.P., Falborski, T., Jankowski, R.

Journal: Engineering Structures

Publication Year: 2024

Volume: 318

Article ID: 118756

2. A New Seismic Control Framework of Optimal PIλDµ Controller Series with Fuzzy PD Controller Including Soil-Structure Interaction

Authors: Etedali, S., Zamani, A.-A., Akbari, M., Seifi, M.

Journal: Journal of the Franklin Institute

Publication Year: 2023

Volume: 360

Issue: 14

Pages: 10536–10563

Citations: 4

3. Friction Tuned Mass Dampers in Seismic-Excited High-Rise Buildings with SSI Effects: A Reliability Assessment

Authors: Etedali, S., Akbari, M., Seifi, M.

Journal: Journal of Earthquake and Tsunami

Publication Year: 2023

Volume: 17

Issue: 2

Article ID: 2250022

Citations: 7

4. Failure Probability of Tall Buildings with TMD in the Presence of Structural, Seismic, and Soil Uncertainties

Authors: Etedali, S., Seifi, M., Akbari, M.

Journal: Structural Engineering and Mechanics

Publication Year: 2023

Volume: 85

Issue: 3

Pages: 381–391

Citations: 2

5. MOCS-Based Optimum Design of TMD and FTMD for Tall Buildings Under Near-Field Earthquakes Including SSI Effects

Authors: Etedali, S., Akbari, M., Seifi, M.

Journal: Soil Dynamics and Earthquake Engineering

Publication Year: 2019

Volume: 119

Pages: 36–50

Citations: 52

6. A Numerical Study on Optimal FTMD Parameters Considering Soil-Structure Interaction Effects

Authors: Etedali, S., Seifi, M., Akbari, M.

Journal: Geomechanics and Engineering

Publication Year: 2018

Volume: 16

Issue: 5

Pages: 527–538

Citations: 12

Conclusion:

Morteza Akbari’s academic achievements, specialized research in seismic control and soil-structure interaction, and his solid publication record make him a strong contender for the Best Researcher Award. His work addresses critical challenges in structural engineering, particularly in enhancing the safety and resilience of buildings against seismic activities. By expanding his research’s broader impact and increasing his international collaborations, Akbari can further solidify his standing as a leading researcher in his field. His current trajectory suggests a promising future, with the potential to make significant contributions to civil engineering and structural dynamics.