Atsushi Kakogawa | Robotics and Mechatronics | Best Researcher Award

Assoc. Prof. Dr Atsushi Kakogawa |  Robotics and Mechatronics | Best Researcher Award

Associate Professor at Ritsumeikan University, Japan

🌟 Atsushi Kakogawa, Ph.D., is an Associate Professor in Robotics at Ritsumeikan University, Japan. A pioneer in robotics, he excels in mobile robot design, mechanical systems, and embedded systems. Proficient in programming languages like C++, Python, and more, Dr. Kakogawa has a prolific career marked by teaching, research, and leadership in international robotics conferences.

Profile

scholar

Education🎓 

Doctor of Engineering, Ritsumeikan University, Japan, 2015.  Master of Engineering, Ritsumeikan University, Japan, 2012.  Bachelor of Engineering, Department of Robotics, Ritsumeikan University, Japan, 2010.

Experience💼

Associate Professor, Ritsumeikan University (2023–Present).  Lecturer and Visiting Assistant Professor at University of Waterloo (2017). Assistant Professor, Ritsumeikan University (2015–2019).

Awards and Honors🏆

KAKENHI Grants from Japan Society for the Promotion of Science. Shiga Prefecture Technology Promotion Subsidy (2022). Organizer and Editor roles in top IEEE conferences, including IROS and ICRA.

Research Focus🤖

Robotics: Mobile robot design and mechanical system applications.  Embedded systems and advanced Internet communication technologies.  Multidisciplinary programming in C++, Python, and SQL for robotics innovation.

Publication  Top Notes

Design of a Multilink-Articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints

Journal: Advanced Robotics, 2018

Citations: 73

Highlights: Introduces a pipeline robot leveraging passive elastic joints for adaptability in complex pipeline systems.

Mobility of an In-Pipe Robot with Screw Drive Mechanism Inside Curved Pipes

Conference: IEEE International Conference on Robotics and Biomimetics, 2010

Citations: 72

Highlights: Explores screw drive mechanisms for pipeline robots navigating curved environments.

Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved and Vertical Pipes

Journal: Advanced Robotics, 2012

Citations: 55

Highlights: Focuses on optimizing spring stiffness to enhance robot mobility in diverse pipe geometries.

Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes

Journal: Robotica, 2016

Citations: 50

Highlights: Discusses arm length designs crucial for overcoming vertical bends in pipelines.

An In-Pipe Robot with Underactuated Parallelogram Crawler Modules

Conference: IEEE International Conference on Robotics and Automation, 2014

Citations: 48

Highlights: Presents a robot with a novel crawler module enhancing adaptability and efficiency.

Design of a Multilink-Articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II

Conference: IEEE/RSJ Intelligent Robots and Systems, 2016

Citations: 46

Highlights: Develops AIRo-II, a wheeled robot optimized for winding and complex pipelines.

Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches

Conference: IEEE International Conference on Automation Science and Engineering, 2012

Citations: 42

Highlights: Proposes mechanisms for robots to autonomously navigate pipeline branches.

Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes

Conference: IEEE ISR, 2013

Citations: 41

Highlights: Focuses on screw drive robots overcoming pipeline bends and branches.

Underactuated Modular Finger with Pull-In Mechanism for a Robotic Gripper

Conference: IEEE Robotics and Biomimetics, 2016

Citations: 40

Highlights: Introduces a robotic gripper using an underactuated mechanism for enhanced grasping.

Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators

Journal: IEEE Robotics and Automation Letters, 2018

Citations: 39

Highlights: Examines stiffness optimization for snake robots in planar environments.

Conclusion

Dr. Atsushi Kakogawa is a highly accomplished researcher whose contributions to robotics and mechatronics make him a strong contender for the Best Researcher Award. His academic rigor, leadership in the robotics community, and innovation in mobile and embedded systems distinguish him as a trailblazer in his field. By addressing areas such as industrial collaboration and broader global recognition, he could solidify his position as a preeminent figure in robotics research.

Atsushi Kakogawa | Robotics and Mechatronics | Best Researcher Award Ritsumeikan University

Assoc. Prof. Dr Atsushi Kakogawa |  Robotics and Mechatronics | Best Researcher Award

Associate Professor at Ritsumeikan University, Japan

🌟 Atsushi Kakogawa, Ph.D., is an Associate Professor in Robotics at Ritsumeikan University, Japan. A pioneer in robotics, he excels in mobile robot design, mechanical systems, and embedded systems. Proficient in programming languages like C++, Python, and more, Dr. Kakogawa has a prolific career marked by teaching, research, and leadership in international robotics conferences.

Profile

scholar

Education🎓 

Doctor of Engineering, Ritsumeikan University, Japan, 2015.  Master of Engineering, Ritsumeikan University, Japan, 2012.  Bachelor of Engineering, Department of Robotics, Ritsumeikan University, Japan, 2010.

Experience💼

Associate Professor, Ritsumeikan University (2023–Present).  Lecturer and Visiting Assistant Professor at University of Waterloo (2017). Assistant Professor, Ritsumeikan University (2015–2019).

Awards and Honors🏆

KAKENHI Grants from Japan Society for the Promotion of Science. Shiga Prefecture Technology Promotion Subsidy (2022). Organizer and Editor roles in top IEEE conferences, including IROS and ICRA.

Research Focus🤖

Robotics: Mobile robot design and mechanical system applications.  Embedded systems and advanced Internet communication technologies.  Multidisciplinary programming in C++, Python, and SQL for robotics innovation.

Publication  Top Notes

Design of a Multilink-Articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints

Journal: Advanced Robotics, 2018

Citations: 73

Highlights: Introduces a pipeline robot leveraging passive elastic joints for adaptability in complex pipeline systems.

Mobility of an In-Pipe Robot with Screw Drive Mechanism Inside Curved Pipes

Conference: IEEE International Conference on Robotics and Biomimetics, 2010

Citations: 72

Highlights: Explores screw drive mechanisms for pipeline robots navigating curved environments.

Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved and Vertical Pipes

Journal: Advanced Robotics, 2012

Citations: 55

Highlights: Focuses on optimizing spring stiffness to enhance robot mobility in diverse pipe geometries.

Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes

Journal: Robotica, 2016

Citations: 50

Highlights: Discusses arm length designs crucial for overcoming vertical bends in pipelines.

An In-Pipe Robot with Underactuated Parallelogram Crawler Modules

Conference: IEEE International Conference on Robotics and Automation, 2014

Citations: 48

Highlights: Presents a robot with a novel crawler module enhancing adaptability and efficiency.

Design of a Multilink-Articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II

Conference: IEEE/RSJ Intelligent Robots and Systems, 2016

Citations: 46

Highlights: Develops AIRo-II, a wheeled robot optimized for winding and complex pipelines.

Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches

Conference: IEEE International Conference on Automation Science and Engineering, 2012

Citations: 42

Highlights: Proposes mechanisms for robots to autonomously navigate pipeline branches.

Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes

Conference: IEEE ISR, 2013

Citations: 41

Highlights: Focuses on screw drive robots overcoming pipeline bends and branches.

Underactuated Modular Finger with Pull-In Mechanism for a Robotic Gripper

Conference: IEEE Robotics and Biomimetics, 2016

Citations: 40

Highlights: Introduces a robotic gripper using an underactuated mechanism for enhanced grasping.

Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators

Journal: IEEE Robotics and Automation Letters, 2018

Citations: 39

Highlights: Examines stiffness optimization for snake robots in planar environments.

Conclusion

Dr. Atsushi Kakogawa is a highly accomplished researcher whose contributions to robotics and mechatronics make him a strong contender for the Best Researcher Award. His academic rigor, leadership in the robotics community, and innovation in mobile and embedded systems distinguish him as a trailblazer in his field. By addressing areas such as industrial collaboration and broader global recognition, he could solidify his position as a preeminent figure in robotics research.

Zhiyi Liu | Embodied Intelligence | Best Researcher Award

Dr. Zhiyi Liu | Embodied Intelligence | Best Researcher Award

Chief Scientist at Eastmoney AI Research Institute, China

The individual is a distinguished AI scientist with a vast background in multimodal AI, data integration, and financial technology. 📊 They have contributed significantly to AI applications across various industries, including search engines, digital healthcare, and financial markets. 🌐 Holding senior positions at prominent companies such as Baidu, SenseTime, and East Money Group, they have driven innovation in AI algorithms and system architecture. 💻 Their leadership in AI governance and multimodal model development has solidified their role as a key player in the AI landscape. 🤖 Additionally, their collaboration with academic and industry leaders, including Professor Andrew Ng, has furthered the integration of cutting-edge AI into real-world applications.

Publication Profile

scholar

Education 🎓

They are pursuing an IMBA at the University of Hong Kong Business School (2024-2026).  They completed their Doctorate in Intelligent Manufacturing at ISTEC Paris (2021-2024).  Their undergraduate education is in Computer Science and Technology from Beijing University of Posts and Telecommunications (2007-2011).  Throughout their academic career, they have focused on merging technical expertise with strategic innovation, especially in fields related to AI, intelligent manufacturing, and business. Their education has laid a solid foundation for their work, combining both advanced technical skills and a keen understanding of the business implications of AI technologies.

Experience 🔧

Currently, they are the Principal Scientist & Executive Dean at East Money Group, leading intelligent financial risk assessment models.  Prior to this, they co-founded and served as an AI scientist at SenseTime (2019-2022), where they led multimodal data fusion projects.  At Baidu (2011-2018), they spearheaded the integration of AI into search technologies and collaborated with top AI experts, including Andrew Ng. 🤝 They have also contributed to the development of multimodal AI models at the Chinese Academy of Sciences (2018-2019). Their diverse experience encompasses AI applications in finance, healthcare, and autonomous systems.

Awards and Honors 🏆 

At the international level, they are a member of the technical committee for the IEEE CCAI 2024 conference and a technical expert for the IEC/SMB/SEG12 Bio-digital Convergence System Evaluation Team.  Nationally, they are a member of the AI Ethics Working Committee of the Chinese Association for Artificial Intelligence and an expert on Chinese AI standards. 🇨🇳 They are a distinguished fellow at Shanghai Jiaotong University’s AI and Marketing Research Center and serve as the Executive Director of the Research Center for Computational Law and AI Ethics. 🏅 Their accolades reflect their contributions to AI ethics, governance, and research.

Research Focus  🔬

Their research centers on multimodal AI, integrating data streams from text, images, speech, and video to enhance AI’s cognitive abilities. 🧠 They have made significant advancements in natural language processing (NLP), computer vision, and deep learning.  Their work also addresses AI governance, ensuring transparency, fairness, and compliance in AI systems.  They focus on practical applications in digital healthcare, where multimodal data fusion has improved diagnostic accuracy and patient care.  Additionally, they have applied AI innovations to financial markets, optimizing decision-making through advanced algorithms and risk assessment models.

Conclusion

This candidate demonstrates exceptional qualifications for the Best Researcher Award, thanks to their pioneering work in embodied intelligence, multimodal AI models, and cross-sector applications. Their leadership in AI innovation, coupled with their significant academic influence and contributions to AI ethics, makes them a standout nominee. By leveraging further commercial application and broadening international collaborations, they can continue to push the boundaries of AI research, solidifying their position as a leading researcher in the global AI community.

Publication  Top Notes

Development Paradigm of Artificial Intelligence in China from the Perspective of Digital Economics 📊: Z Liu, Y Zheng explore the AI development in China’s digital economy. (Journal of Chinese Economic and Business Studies, 2022)

Evolving Financial Markets: The Impact and Efficiency of AI-Driven Trading Strategies 💹: Z Liu, K Zhang, D Miao discuss the role of AI in enhancing trading efficiency. (International Conference on Intelligence Science, 2024)

Research on Intelligent Computing and Trustworthy Machine Learning in Financial Complex Systems 🤖: Z Liu, K Zhang, Y Zheng, S Xu, J Qu investigate AI applications in financial systems. (2024 International Conference on Data-Driven Optimization)

Application Methods of Large Language Model Interpretability in FinTech Scenarios 💼: Z Liu, K Zhang, Y Zheng, Z Sun study LLM interpretability in financial technology. (2024 International Conference on Computer Communication and Artificial Intelligence)

Application of Visualization Methods in Neural Network Training Processes 👁️: Z Liu, K Zhang, Y Zheng, L Zheng examine neural network training visualization techniques. (2024 International Symposium on AI)

A New Era of Financial Services: How AI Enhances Investment Efficiency 💼📈: Z Liu, K Zhang, H Zhang explore AI’s role in improving investment practices. (International Studies of Economics, 2024)

Hugo Bildstein | Sensor-based Control | Best Researcher Award

Dr. Hugo Bildstein | Sensor-based Control | Best Researcher Award

Dr. LAAS-CNRS, France

Hugo Bildstein is a PhD candidate and Temporary Teaching and Research Assistant at the University of Toulouse 3 – Paul Sabatier, affiliated with the RAP team at LAAS-CNRS. His academic background includes a Master’s degree in Robotics from Toulouse and a previous engineering degree in Mechatronics from ENS Rennes. Hugo’s research focuses on visual predictive control for mobile manipulators, with notable publications in leading journals and conferences, including Robotics and Autonomous Systems (RAS) and IEEE/ASME AIM. His work explores strategies for improving visibility, manipulability, and stability in robotic systems.

Professional Profiles:

scopus

Academic Background 🎓:

Hugo Bildstein is currently a Temporary Teaching and Research Assistant at the University of Toulouse 3 – Paul Sabatier, working within the RAP team at LAAS-CNRS, Toulouse. His academic journey includes a PhD at the same university from 2020-2024, following a Master’s degree in Robotics: Decision and Control (RODECO) at the University of Toulouse 3 – Paul Sabatier. Hugo also holds a Master’s degree in Mechatronics from ENS Rennes and ranked 11th in the Agrégation in Industrial Engineering Sciences, Electrical Engineering option in 2019.

Research Activities and  📚:

Hugo’s research focuses on enhancing visual predictive control for mobile manipulators. His work includes:“Visual Predictive Control for Mobile Manipulators: Visibility, Manipulability, and Stability” – to be published in Robotics and Autonomous Systems (RAS) in 2024.“Enhanced Visual Predictive Control Scheme for Mobile Manipulators” – presented at the 2023 European Conference on Mobile Robots (ECMR) in Coimbra, Portugal.“Multi-camera Visual Predictive Control Strategy for Mobile Manipulators” – showcased at the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) in Seattle, USA.“Visual Predictive Control Strategy for Mobile Manipulators” – discussed at the 2022 European Control Conference (ECC) in London, United Kingdom.

Research Analysis for Hugo Bildstein

Strengths for the Award:

  1. Innovative Contributions: Hugo Bildstein’s research focuses on cutting-edge topics in robotics, particularly visual predictive control for mobile manipulators. His work on enhancing control schemes through multi-camera strategies and visual feedback systems is highly relevant and forward-thinking in the field of robotics and autonomous systems.
  2. Diverse Research Outputs: Bildstein has published several papers in prestigious journals and conferences, demonstrating a consistent and impactful research output. His papers, such as those presented at the European Conference on Mobile Robots (ECMR) and the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), highlight significant contributions to the field.
  3. Academic Excellence: His strong academic background, including a PhD in Robotics and a Master’s degree in Robotics and Control, coupled with high rankings in competitive exams like the Agrégation in Industrial Engineering Sciences, underscores his deep expertise and commitment to the field.
  4. Teaching and Research Experience: As a Teaching and Research Assistant at the University of Toulouse 3 – Paul Sabatier, Bildstein not only engages in advanced research but also contributes to academic teaching, showcasing his ability to bridge research and education effectively.

Areas for Improvement:

  1. Citation Impact: While Bildstein has several publications, some of his recent papers have yet to accumulate significant citations. Increasing the visibility and impact of his work through broader dissemination and collaboration could enhance his academic profile.
  2. Interdisciplinary Applications: Expanding research to explore interdisciplinary applications of his work could provide broader impact and open new avenues for practical implementation of his findings.
  3. Research Collaboration: Engaging in collaborative research with industry partners or other academic institutions could provide additional resources and perspectives, potentially leading to more comprehensive studies and real-world applications.

Conclusion:

Hugo Bildstein is a promising candidate for the Best Researcher Award due to his innovative contributions to the field of robotics, particularly in visual predictive control for mobile manipulators. His strong academic background, diverse research outputs, and active role in teaching and research highlight his potential and dedication. Addressing areas such as citation impact and interdisciplinary applications could further enhance his standing in the research community.

✍️Publications Top Note :

1. Enhanced Visual Predictive Control Scheme for Mobile Manipulators

Authors: Hugo Bildstein, A. Durand-Petiteville, V. Cadenat

Citations: 0

2. Multi-camera Visual Predictive Control Strategy for Mobile Manipulators

Authors: Hugo Bildstein, A. Durand-Petiteville, V. Cadenat

3. Visual Predictive Control Strategy for Mobile Manipulators

Authors: Hugo Bildstein, A. Durand-Petiteville
Citations: 2
Access: Open access

Prof Dr. Claudio Urrea | Robotics | Best Researcher Award | 2751

Prof Dr. Claudio Urrea | Robotics | Best Researcher Award

Prof Dr. Claudio Urrea,  Universidad de Santiago de, Chile 

Mr. Carlos Domínguez Acosta is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Google scholar

ORCID

👨‍🎓 Education and Experience

I earned my B.Eng. from Universidad Tecnológica de La Habana, Havana, Cuba, in 2014. Following graduation, I served as a professor at Universidad Tecnológica de La Habana, contributing to the Faults Diagnosis and Parameters Estimation for Industrial Processes research group. Our work, focused on fuzzy logic for faults diagnosis, was presented internationally and published in a reputable journal. Currently pursuing a Ph.D. in Electric Engineering at Universidad de Santiago de Chile since March 2021, my research interests span robotics, automation, process control, artificial intelligence, faults diagnostics, and fault-tolerant control.

🌐 Research and Innovations

I have completed three research projects, with a citation index of 1 in Scopus/Web of Science. My cumulative impact factor for the last three years stands at 20.5. Aiming to bridge gaps in robotics, I’ve developed a novel 4-arm Delta parallel manipulator for the food industry, incorporating intelligent control and fuzzy logic techniques. These contributions form a foundation for future industrial applications and guide the next generation of researchers.

🏆 Achievements

Two journals published in Scopus, Web of Science, and PubMed indexes.Graduated two research scholars.Organized and presented at one conference.Received one award.

🚀 Contribution to R&D and Extension Activities

My research supports robotics development, specifically a 4-arm Delta manipulator for the food industry. Intelligent control and fuzzy logic techniques contribute to a space lacking attention, providing foundations for industrial applications and inspiring future researchers.

📝 Self Declaration

I affirm the accuracy and completeness of the provided information. Any concealment of material information may lead to the termination of my application. I have read and agreed to the terms, conditions, and policies of the International Research Awards.

📊 Citation Metrics (Google Scholar):

Citations by: All – 35, Since 2018 – 30

h-index: All – 1, Since 2018 – 1

i10 index: All – 1, Since 2018 –1