Nahid Entezarian | Machine Interaction | Best Researcher Award

Ms. Nahid Entezarian | Machine Interaction | Best Researcher Award

Author, University of Mashhad, Mashhad, Iran

Nahid Entezarian is a Ph.D. candidate in Information Technology Management at Ferdowsi University of Mashhad. Her research interests include text mining, data mining, NeuroIS, artificial intelligence, machine learning, and research methodology in information systems.

Profile

scholar

Education 🎓

Nahid Entezarian is currently pursuing her Ph.D. in Information Technology Management at Ferdowsi University of Mashhad, specializing in Smart Business. Her academic background has provided a solid foundation for her research and professional endeavors.

Experience 🧪

Unfortunately, the provided text does not mention specific work experience or professional roles held by Nahid Entezarian.

Awards & Honors �

Unfortunately, the provided text does not mention specific awards or honors received by Nahid Entezarian.

Research Focus 🔍

1. Text Mining: Investigating the application of text mining techniques in various domains.
2. Data Mining: Exploring the use of data mining methods for knowledge discovery.
3. NeuroIS: Examining the intersection of neuroscience and information systems.
4. Artificial Intelligence: Investigating the application of AI in various domains.
5. Machine Learning: Developing and applying machine learning algorithms for data analysis.

Publications📚

1. An investigation extent and factors influencing the users’ perception of database interface based on Nielsen model 📊
2. GUIDELINES FOR USER INTERFACE DESIGN BASED ON USERS’BEHAVIORS, EXPECTATIONS AND PERCEPTIONS 📈
3. Topic Modeling on System Thinking Themes Using Latent Dirichlet Allocation, Non-Negative Matrix Factorization and BER Topic 🤖
4. NeuroIS: A Systematic Review of NeuroIS Through Bibliometric Analysis 🧠
5. The Application of Artificial Intelligence in Smart Cities: A Systematic Review with Methodi Ordinatio 🌆
6. Systems Thinking in the Circular Economy: An Integrative Literature Review ♻️
7. The impact of knowledge management and Industry 4.0 technologies in organizations: a meta-synthesis approach 📈
8. Topic Modeling Emerging Trends for Business Intelligence in Marketing: With Text Mining and Latent Dirichlet Allocation 📊
9. Topic Modeling Emerging Trends for Business Intelligence in Marketing: With Text Mining and Latent Dirichlet Allocation 📊
10. Introducing and Evaluation of Rogers’s Diffusion Innovation Theory 📈

Conclusion 🏆

Nahid Entezarian’s impressive academic and research experience, research output, interdisciplinary research approach, and collaborations make her an outstanding candidate for the Best Researcher Award. While there are areas for improvement, her strengths and achievements demonstrate her potential to make a significant impact in her field.

Zhangcun Yan | automatic vehicle system | Best Researcher Award

Dr. Zhangcun Yan | automatic vehicle system | Best Researcher Award

Research fellow,Tongji University, China

Zhangcun Yan is a Research Assistant at Tongji University, specializing in intelligent transportation systems. He earned his Ph.D. in Transportation from Tongji University (2024), an M.Sc. in Transportation Engineering from Southwest Jiaotong University (2018), and a B.Sc. in Transportation from Ningbo University of Technology (2015). As a visiting scholar at the University of Montreal (2023–2024), he expanded his expertise in AI-driven traffic safety solutions. His research focuses on applying computer vision and artificial intelligence to enhance urban mobility, traffic safety, and autonomous systems. Zhangcun has developed novel trajectory reconstruction methods, real-time road friction detection models, and risk assessment frameworks for mixed-traffic environments. His work has been published in top-tier journals such as Expert Systems with Applications and Traffic Injury Prevention. With a citation index of 44, he continues to push the boundaries of intelligent transportation, making significant contributions to reducing accidents and improving urban traffic management.

Profile.

orcid

🎓 Education 

Throughout his academic journey, Zhangcun has been dedicated to integrating artificial intelligence with transportation engineering to enhance road safety and efficiency. His doctoral research led to the development of an innovative NONM trajectory reconstruction method, significantly improving vehicle movement analysis in complex traffic environments. His studies also focused on real-time detection of road surface friction coefficients, a crucial factor in preventing weather-related traffic accidents. Zhangcun’s multidisciplinary education bridges the gap between traditional traffic engineering and cutting-edge AI applications.

💼 Experience

Zhangcun Yan has extensive experience in transportation research, focusing on AI applications in intelligent mobility and road safety. At Tongji University, he spearheaded multiple projects, including real-time road friction detection and automated trajectory reconstruction for urban intersections. During his tenure as a visiting scholar in Canada, he collaborated with global experts to enhance traffic risk modeling. His expertise in integrating deep learning with computer vision has led to groundbreaking solutions for vehicle tracking and collision prediction. Zhangcun’s experience spans interdisciplinary research, algorithm development, and data-driven transportation analytics, contributing to next-generation urban mobility solutions.

🏆 Awards and Honors

Zhangcun Yan has received multiple accolades for his pioneering work in AI-driven transportation research. His paper on NONM trajectory reconstruction was recognized as the Best Research Paper at an international conference, reflecting his innovative approach to solving urban mobility challenges. He was also honored for his contributions to intelligent transportation solutions at Tongji University. His ability to bridge AI with real-world traffic safety applications has earned him recognition as one of China’s top emerging transportation researchers. These awards highlight his dedication to making roads safer and more efficient through AI-powered solutions.

🔬 Research Focus 

🚗 Trajectory Reconstruction & Analysis – Developed a high-precision NONM method to enhance vehicle trajectory accuracy using social force models and particle filtering.

 Road Surface Friction Detection – Created a real-time RSFC detection system using CNN-based vision models, improving road safety in adverse weather.

⚠️ Driving Risk Assessment – Designed an AI-based risk prediction framework for mixed-traffic environments, aiding in proactive accident prevention.

📹 Computer Vision for Traffic Monitoring – Implemented YOLOv7 and DeepSort algorithms for automated vehicle tracking and intersection analysis.

His interdisciplinary work integrates AI, deep learning, and transportation engineering, leading to more efficient urban traffic management and reduced road accidents. Zhangcun’s research continues to drive innovations in autonomous driving, intelligent traffic systems, and urban mobility safety.

Publications

🏎️ “Trajectory Reconstruction Using NONM and Social Force Models” – Expert Systems with Applications

🚦 “AI-Driven Road Surface Friction Estimation in Adverse Weather” – Alexandria Engineering Journal

🚘 “Collision Risk Prediction at Urban Intersections” – Traffic Injury Prevention

🚲 “Analyzing Mixed-Traffic Interactions Using Deep Learning” – Journal of Transportation Engineering

Conclusion

Zhangcun Yan is a strong contender for the Best Researcher Award in mechanics and transportation engineering. His work in computer vision, AI-driven risk modeling, and autonomous safety systems makes a significant contribution to the field. However, improving industry collaborations, patent filings, and professional memberships would further establish his standing as a leading researcher in intelligent transportation systems. If he continues expanding his research outreach and practical applications, he will be an even more influential figure in the domain.

 

 

Manar Hamza | Computer Science Data mining | Best Researcher Award

Dr. Manar Hamza | Computer Science Data mining | Best Researcher Award

professor at  Prince Sattam bin Abd El Aziz University, China

👩‍🏫 Experienced Computer Science Lecturer since 2005 with expertise in data mining, text mining, and information security. 💻 Holds a strong track record in research and academia, leveraging innovation and teamwork. Aims to thrive in challenging, dynamic, and team-oriented environments that foster growth. 🌍 Based in Sudan and Saudi Arabia, dedicated to academic excellence and community impact.

Professional Profiles:

scopus

Education 🎓

Ph.D. in Computer Science from Omdurman Islamic University, Sudan (2018–2021). 🎓 Master’s Degree in Computer Science from Sudan University of Science and Technology (2003–2005). 🎓 B.Sc. in Computer Science from Omdurman Islamic University, Sudan (1995–1999). 📚 Comprehensive training in research skills, academic advising, and IT tools like Mendeley, Latex, and iThenticate.

Experience 🖥️

Lecturer in Computer Science at Prince Sattam bin Abdul-Aziz University, Saudi Arabia (2013–present). 👩‍💼 Supervisor and Coordinator roles in quality, academic advising, and measurement (2014–2020). 🇸🇩 Lecturer at Omdurman Islamic University, Sudan (2005–2012). 👩‍🔬 E-teaching and training specialist with Arab Board experience (2023).

Awards and Honors 🏆

Certificates of Appreciation from PSAU for contributions to quality, development, and academic planning. 🙌 Recognized for voluntary services, including extracurricular activities and technical support for students and staff. ⭐ Esteemed arbitrator in scientific and innovation conferences. 📜 Active contributor to enhancing the learning environment with innovative solutions.

Research Focus 🔍

Data mining, text mining, and information security are core research areas. 📊 Interested in qualitative research, outcome-based education, and e-learning systems. 🌐 Advocates for advancing academic IT tools like Prezi, Mendeley, and iThenticate. 🛡️ Exploring cybersecurity methods and their application in education and industry.

✍️Publications Top Note :

1. Robust Tweets Classification Using Arithmetic Optimization with Deep Learning for Sustainable Urban Living

Published in: SN Computer Science, 2024, 5(5), 549

Summary: This paper proposes a novel classification model for urban-related tweets using arithmetic optimization integrated with deep learning to support sustainable urban living solutions.

2. Enhancing Traffic Flow Prediction in Intelligent Cyber-Physical Systems

Published in: IEEE Transactions on Consumer Electronics, 2024, 70(1), pp. 1889–1902

Summary: Introduces a Bi-LSTM approach enhanced with a Kalman filter for accurate traffic flow prediction, addressing challenges in intelligent cyber-physical systems.

Citations: 5

3. Deer Hunting Optimization with Deep Learning-Driven Automated Fabric Defect Detection and Classification

Published in: Mobile Networks and Applications, 2024, 29(1), pp. 176–186

Summary: Utilizes the Deer Hunting Optimization algorithm with deep learning to achieve high accuracy in detecting and classifying fabric defects.

Citations: 1

4. Automatic Recognition of Cyberbullying in the Web of Things and Social Media Using Deep Learning Framework

Published in: IEEE Transactions on Big Data, 2024

Summary: Develops a deep learning-based framework to detect and prevent cyberbullying within social media and IoT environments.

5. Artificial Rabbit Optimizer with Deep Learning for Fall Detection in IoT Environment

Published in: AIMS Mathematics, 2024, 9(6), pp. 15486–15504

Summary: Introduces the Artificial Rabbit Optimizer combined with deep learning to enhance fall detection systems for disabled individuals in IoT environments.

Citations: 1

6. Computational Linguistics-Based Arabic Poem Classification and Dictarization Model

Published in: Computer Systems Science and Engineering, 2024, 48(1), pp. 98–114

Summary: Proposes a computational linguistics model to classify Arabic poems and enhance their dictarization process.

7. Abstractive Arabic Text Summarization Using Hyperparameter Tuned Denoising Deep Neural Network

Published in: Intelligent Automation and Soft Computing, 2024, 38(2), pp. 153–168

Summary: Develops a deep neural network with hyperparameter tuning for effective abstractive summarization of Arabic texts.

Citations: 1

8. Chaotic Equilibrium Optimizer-Based Green Communication With Deep Learning Enabled Load Prediction in IoT Environment

Published in: IEEE Access, 2024, 12, pp. 258–267

Summary: Presents a Chaotic Equilibrium Optimizer combined with deep learning to improve green communication and load prediction in IoT systems.

Citations: 2

9. Land Use and Land Cover Classification Using River Formation Dynamics Algorithm With Deep Learning on Remote Sensing Images

Published in: IEEE Access, 2024, 12, pp. 11147–11156

Summary: Leverages the River Formation Dynamics algorithm integrated with deep learning for efficient land use and land cover classification using remote sensing data.

Citations: 4

10. Prediction of Sleep Quality Using Wearable-Assisted Smart Health Monitoring Systems

Published in: Journal of King Saud University – Science, 2023, 35(9), 102927

Summary: Utilizes wearable technology and statistical data to predict sleep quality, providing insights into personalized smart health monitoring systems.

Citations: 1

Conclusion

The candidate’s extensive experience, academic qualifications, and contributions to computer science, particularly in data mining and information security, make them a strong contender for the Research for Best Researcher Award. With some strategic enhancements to highlight impactful research and global contributions, their profile could exemplify the qualities of an award-winning researcher in computer science.

Zhiyi Liu | Embodied Intelligence | Best Researcher Award

Dr. Zhiyi Liu | Embodied Intelligence | Best Researcher Award

Chief Scientist at Eastmoney AI Research Institute, China

The individual is a distinguished AI scientist with a vast background in multimodal AI, data integration, and financial technology. 📊 They have contributed significantly to AI applications across various industries, including search engines, digital healthcare, and financial markets. 🌐 Holding senior positions at prominent companies such as Baidu, SenseTime, and East Money Group, they have driven innovation in AI algorithms and system architecture. 💻 Their leadership in AI governance and multimodal model development has solidified their role as a key player in the AI landscape. 🤖 Additionally, their collaboration with academic and industry leaders, including Professor Andrew Ng, has furthered the integration of cutting-edge AI into real-world applications.

Publication Profile

scholar

Education 🎓

They are pursuing an IMBA at the University of Hong Kong Business School (2024-2026).  They completed their Doctorate in Intelligent Manufacturing at ISTEC Paris (2021-2024).  Their undergraduate education is in Computer Science and Technology from Beijing University of Posts and Telecommunications (2007-2011).  Throughout their academic career, they have focused on merging technical expertise with strategic innovation, especially in fields related to AI, intelligent manufacturing, and business. Their education has laid a solid foundation for their work, combining both advanced technical skills and a keen understanding of the business implications of AI technologies.

Experience 🔧

Currently, they are the Principal Scientist & Executive Dean at East Money Group, leading intelligent financial risk assessment models.  Prior to this, they co-founded and served as an AI scientist at SenseTime (2019-2022), where they led multimodal data fusion projects.  At Baidu (2011-2018), they spearheaded the integration of AI into search technologies and collaborated with top AI experts, including Andrew Ng. 🤝 They have also contributed to the development of multimodal AI models at the Chinese Academy of Sciences (2018-2019). Their diverse experience encompasses AI applications in finance, healthcare, and autonomous systems.

Awards and Honors 🏆 

At the international level, they are a member of the technical committee for the IEEE CCAI 2024 conference and a technical expert for the IEC/SMB/SEG12 Bio-digital Convergence System Evaluation Team.  Nationally, they are a member of the AI Ethics Working Committee of the Chinese Association for Artificial Intelligence and an expert on Chinese AI standards. 🇨🇳 They are a distinguished fellow at Shanghai Jiaotong University’s AI and Marketing Research Center and serve as the Executive Director of the Research Center for Computational Law and AI Ethics. 🏅 Their accolades reflect their contributions to AI ethics, governance, and research.

Research Focus  🔬

Their research centers on multimodal AI, integrating data streams from text, images, speech, and video to enhance AI’s cognitive abilities. 🧠 They have made significant advancements in natural language processing (NLP), computer vision, and deep learning.  Their work also addresses AI governance, ensuring transparency, fairness, and compliance in AI systems.  They focus on practical applications in digital healthcare, where multimodal data fusion has improved diagnostic accuracy and patient care.  Additionally, they have applied AI innovations to financial markets, optimizing decision-making through advanced algorithms and risk assessment models.

Conclusion

This candidate demonstrates exceptional qualifications for the Best Researcher Award, thanks to their pioneering work in embodied intelligence, multimodal AI models, and cross-sector applications. Their leadership in AI innovation, coupled with their significant academic influence and contributions to AI ethics, makes them a standout nominee. By leveraging further commercial application and broadening international collaborations, they can continue to push the boundaries of AI research, solidifying their position as a leading researcher in the global AI community.

Publication  Top Notes

Development Paradigm of Artificial Intelligence in China from the Perspective of Digital Economics 📊: Z Liu, Y Zheng explore the AI development in China’s digital economy. (Journal of Chinese Economic and Business Studies, 2022)

Evolving Financial Markets: The Impact and Efficiency of AI-Driven Trading Strategies 💹: Z Liu, K Zhang, D Miao discuss the role of AI in enhancing trading efficiency. (International Conference on Intelligence Science, 2024)

Research on Intelligent Computing and Trustworthy Machine Learning in Financial Complex Systems 🤖: Z Liu, K Zhang, Y Zheng, S Xu, J Qu investigate AI applications in financial systems. (2024 International Conference on Data-Driven Optimization)

Application Methods of Large Language Model Interpretability in FinTech Scenarios 💼: Z Liu, K Zhang, Y Zheng, Z Sun study LLM interpretability in financial technology. (2024 International Conference on Computer Communication and Artificial Intelligence)

Application of Visualization Methods in Neural Network Training Processes 👁️: Z Liu, K Zhang, Y Zheng, L Zheng examine neural network training visualization techniques. (2024 International Symposium on AI)

A New Era of Financial Services: How AI Enhances Investment Efficiency 💼📈: Z Liu, K Zhang, H Zhang explore AI’s role in improving investment practices. (International Studies of Economics, 2024)