Zicheng Xin | intelligentialization | Best Researcher Award

Dr. Zicheng Xin | intelligentialization | Best Researcher Award

postdoctor, University of Science and Technology Beijing, China

Zicheng Xin is a renowned researcher and visiting professor at the Korea Invention Academy. He is affiliated with the University of Science and Technology Beijing (USTB) and has made significant contributions to the field of metallurgical engineering. His research focuses on metallurgical process engineering, intelligence, and simulation.

Profile

scopus

Education 🎓

Ph.D. in Metallurgical Engineering, State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (USTB) (2018-2022)

Experience 🧪

Visiting Professor, Korea Invention Academy (current)  Researcher, State Key Laboratory of Advanced Metallurgy, USTB (current)

Awards & Honors🏆

“Multiscale modeling and collaborative manufacturing for steelmaking plants”, the 10th World Scientist Grand Award — Golden Scientist Grand Award (Second Place, International Federation of Inventors’ Associations, 2023) “Multiscale modeling and collaborative manufacturing for steelmaking plants”, the 10th World Scientist Grand Award— Science & Technology Grand

Research Focus 🔍

Metallurgical process engineering and intelligence  Simulation and optimization of metallurgical process

Publications📚

1. Analysis of multi-zone reaction mechanisms in BOF steelmaking and comprehensive simulation [J]. Materials, 2025, 18(5): 1038. – Zicheng Xin, Qing Liu, Jiangshan Zhang, et al.
2. Modeling of LF refining process: a review [J]. Journal of Iron and Steel Research International, 2024, 31(2): 289-317. – Zicheng Xin, Jiangshan Zhang, Kaixiang Peng, et al.
3. Explainable machine learning model for predicting molten steel temperature in LF refining process [J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(12): 2657-2669. – Zicheng Xin, Jiangshan Zhang, Kaixiang Peng, et al.
4. Predicting temperature of molten steel in LF refining process using IF-ZCA-DNN model [J]. Metallurgical and Materials Transactions B, 2023, 54(3): 1181-1194. – Zicheng Xin, Jiangshan Zhang, Junguo Zhang, et al.
5. Predicting the alloying element yield in a ladle furnace using principal component analysis [J]. … – Zicheng Xin, Jiangshan Zhang, Yu Jin, et al.

Conclusion

Zicheng Xin’s academic excellence, research focus, and international recognition make him a strong candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make significant contributions to the field of metallurgy.

Sabum Jung | Smart factory | Best Researcher Award

Mr. Sabum Jung | Smart factory | Best Researcher Award

Research engineer, Lg energy solution,South Korea

Sabum Jung is a seasoned Data Scientist and Machine Learning Engineer with over 23 years of expertise in predictive modeling, deep learning, and AI-driven optimization. His career spans LG Energy Solution, SK Holdings, and LG Production Engineering Research Institute, where he pioneered AI applications in high-tech manufacturing, including semiconductor, battery, and display industries. A former Military Intelligence Analyst for the U.S. Army, he has authored research papers and books on AI, machine learning, and Industry 4.0. Fluent in English, Korean, and Japanese, he continues to drive AI innovations in industrial applications.

Profile

🎓 Education

Sabum Jung holds a B.A. (3.9/4.5) and an M.S. (4.2/4.5) in Industrial Engineering from Sung Kyun Kwan University, South Korea. His academic journey focused on advanced analytics, AI-driven optimization, and industrial process improvements. His research contributions in artificial intelligence, reliability engineering, and digital transformation have shaped his expertise in machine learning, deep learning, and predictive modeling, positioning him as a leader in AI applications for manufacturing and industrial systems.

💼 Experience

Currently a Data Scientist at LG Energy Solution, Sabum Jung leads AI-driven innovations in virtual metrology, predictive maintenance, and defect analysis. Previously at SK Holdings, he optimized renewable energy predictions, semiconductor material discovery, and AI-powered industrial operations. His 20-year tenure at LG Production Engineering Research Institute saw groundbreaking work in machine learning for smart appliances, battery systems, and industrial automation. His early career as a Military Intelligence Analyst in the U.S. Army honed his analytical prowess, setting the foundation for his AI-driven problem-solving approach.

🏆 Awards & Honors

Sabum Jung has been recognized for his contributions to AI, machine learning, and industrial automation. His accolades include leadership in AI-driven manufacturing optimization, predictive maintenance, and reinforcement learning applications. He has received industry recognition for his research and innovation in deep learning, active learning, and process optimization in high-tech sectors, further cementing his influence in AI-driven industrial advancements.

🔬 Research Focus:

Sabum Jung specializes in AI applications for high-tech manufacturing, focusing on predictive maintenance, virtual metrology, and defect detection. His research spans deep learning, reinforcement learning, and AI-driven industrial process optimization. Notable contributions include renewable energy prediction, semiconductor material discovery, and advanced statistical modeling. His expertise in machine learning has been instrumental in developing AI solutions for smart manufacturing, Industry 4.0, and digital transformation.

Publications

Recent progress of LG PDP: High efficiency & productivity technologies Citations1

Conclusion

Sabum Jung is a strong candidate for the Best Researcher Award, given his vast industry experience, research excellence, and technological contributions to AI and machine learning in manufacturing. Enhancing academic collaborations and increasing research dissemination could further elevate his impact and recognition.