Prof. Dr. Jasenka Gajdoš Kljusurić | Data Science and Deep Learning | Best Researcher Award

Prof. Dr. Jasenka Gajdoš Kljusurić | Data Science and Deep Learning | Best Researcher Award

Prof, Faculty of Food Technology and Biotechnology at University of Zagreb, Croatia

Sylvain S. Guillou is a Full Professor of Fluid Mechanics at the University of Caen Normandy, France. He is the Director of the Applied Science Laboratory LUSAC and has over 176 publications, 38,900 reads, and 1,692 citations. His research focuses on computational physics, fluid dynamics, and geophysics, particularly in tidal turbines and marine renewable energies ¹.

Profile

orcid

🎓 Education

– *HDR – Fluid Mechanics*, University of Caen (2004-2005)- Ph.D. in Applied Mathematics – Mechanics, University of Paris Pierre & Marie Curie (1993-1996)- (link unavailable) in Dynamics of Fluids – Numerical Modeling, Ecole Centrale de Nantes (1992-1993)

👨‍🔬 Experience

– *Full Professor*, University of Caen Normandy (2017-present)- *Associate Professor*, University of Caen Normandy (2005-2017)- *Assistant Professor*, University of Caen Normandy (1999-2005)- *Post-doctoral Researcher*, University of Caen (1996-1997)

🔍 Research Interest

– *Computational Physics*: Numerical simulations of complex fluid flows- *Fluid Dynamics*: Turbulence, sediment transport, and environmental fluid mechanics- *Geophysics*: Marine renewable energies, tidal turbines, and offshore wind energies

Awards and Honors 🏆

Although specific awards and honors are not detailed, Guillou’s editorial roles and conference organization demonstrate his recognition in the field ¹ ²: – *Associate Editor*, Energies, La Houille Blanche, and International Journal for Sediment Research- *Organizer*, International Conference on Estuaries and Coasts (ICEC-2018) and other conferences

📚 Publications 

– Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport–Application to the Alderney Race (Raz Blanchard), France 🌊
– Modelling turbulence with an Actuator Disk representing a tidal turbine 🌟
– A two-phase numerical model for suspended-sediment transport in estuaries 🌴
– Wake field study of tidal turbines under realistic flow conditions 💨
– Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio 🌊

Conclusion

Sylvain S. Guillou’s impressive research record, leadership roles, and editorial activities make him an excellent candidate for the Best Researcher Award. His contributions to computational physics, fluid dynamics, and geophysics have significantly advanced our understanding of these fields. With some potential for interdisciplinary collaborations and exploring emerging topics, Guillou is well-suited to receive this award ¹ ².

YASHWANTH H L | Composite samples | Best Researcher Award

Mr. YASHWANTH H L | Composite samples | Best Researcher Award

Researcher, Freelance, India

Yashwanth H L is a fresh graduate in Aeronautical Engineering with a strong passion for aircraft design and innovation. He possesses a solid understanding of mechanical principles, aerodynamics, and aircraft structures. Yashwanth is proficient in industry-standard software for design and analysis, including Ansys, CATIA, and Matlab. He has worked on various projects, such as characterizing reduced graphene oxide-filled glass fabric thermosets and analyzing the acoustic and vibrational properties of Calamus Rotang natural fiber composites. With a keen interest in research and development, Yashwanth has published papers in reputable journals and presented at international conferences. He is eager to contribute to the industry and continue learning and growing in his career. 🚀

Profile

scholar

🎓 Education

Yashwanth H L holds a Bachelor’s degree in Aeronautical Engineering from Srinivas Institute of Technology, Valachil, Mangalore, with a CGPA of 7.3. He completed his pre-university education at St Mary’s P U College, H D Kote, with a percentage of 83.83%. Yashwanth’s academic background has provided a strong foundation for his research and industry work. Throughout his academic journey, he has demonstrated a commitment to excellence and innovation in the field of aeronautical engineering. 📚

👨‍🔬 Experience

Yashwanth H L has gained valuable experience through internships and projects. He worked as a Design and Analysis Intern at Brahmastra Aerospace, where he applied his skills in Ansys and other software. Yashwanth also completed internships in Matlab and Simulink simulations at Pegasus Aerospace and rocket design and analysis at Feynman Aerospace. These experiences have enabled him to develop practical skills and apply theoretical knowledge to real-world problems. 🚀

🔍 Research Interest

Yashwanth H L’s research focuses on materials science, structural analysis, and aerodynamics. He has worked on projects involving reduced graphene oxide-filled glass fabric thermosets and Calamus Rotang natural fiber composites. Yashwanth’s research aims to develop innovative materials and solutions for aerospace applications. His work has potential implications for improving aircraft performance, safety, and efficiency. 🔍

🏆 Awards

Yashwanth H L has received recognition for his research and academic achievements. He has published papers in reputable journals, including Nature’s Scientific Reports and Results in Engineering, Elsevier. Yashwanth has also presented at international conferences, such as the International Conference on Nanotechnology and the SME-2023 conference. These achievements demonstrate his potential as a researcher and innovator in the field of aeronautical engineering. 🎉

📚 Publications

1. Mechanical characterization & regression analysis of Calamus rotang based hybrid natural fibre composite with findings reported on retrieval bending strength 📊
2. Characterization and Mechanical Studies of Reduced Graphene Oxide Filled Glass Fabric Thermosets 🔬
3. Evaluation of Mechanical, Acoustic and Vibration characteristics of Calamus Rotang based Hybrid natural fiber composite

Conclusion

Yashwanth’s research experience, publication record, technical skills, and collaboration abilities make him a strong candidate for the Best Researcher Award. With further development and refinement, he has the potential to make significant contributions to the field of aeronautical engineering ¹

SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Dr. SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Postdoctoral Researcher, Sungkyunkwan University, South Korea

Dr. Samanth Kokkiligadda is a research professor in Chemical Engineering at Sungkyunkwan University, South Korea, specializing in sustainable energy solutions. With a Ph.D. in Physics, his expertise spans nanomaterials, energy storage, and biomass conversion. His work integrates biopolymers and flexible films to advance eco-friendly supercapacitors and photocurrent applications. Dr. Kokkiligadda has received prestigious awards, including the SKKU Innovation Research Fellowship and a gold medal in Chemistry. Proficient in nanomaterials functionalization, quantum dots, and electrochemical techniques, he contributes significantly to material synthesis and energy conversion research.

Profile

orcid

🎓 Education

Ph.D. in Physics (2019–2023), Sungkyunkwan University, South Korea 🏅 Dissertation: “Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors.” Awarded the Best SKKU Innovative Research Award. M.Sc. in Physics (2016–2018), P.B. Siddhartha College of Arts & Sciences, India 🎓 Specialization in Condensed Matter Physics with an 80% aggregate score. B.Sc. in M.P.C. (2013–2016), Krishna University, India 🏆 Graduated with 91.3%, earning a gold medal in Chemistry.

💼 Experience

BK21+ Postdoctoral Researcher, Sungkyunkwan University, South Korea (Present) 🔬 Researching DNA-based nanostructures for photocurrent and supercapacitor applications. Developing high-performance biopolymer-based energy storage devices. Graduate Researcher, Sungkyunkwan University, South Korea (2019–2023) 🧪 Conducted extensive studies on functional nanomaterials, quantum dots, and MXenes. Specialized in electrode synthesis for energy storage applications.

🏆 Awards & Honors 

SKKU Innovation Research Fellowship (BK21), 2022 🌟 All India 14th Rank, UGC Merit Scholarship, 2016-17 🏅Pratibha Award & Gold Medal in Chemistry, Krishna University, 2016 🏆 KU-SET 17th Rank, Andhra Pradesh University Entrance Test 🎖 2nd Prize in Photography, Cognition Nalanda University, 2018 📸 1st Prize in Quiz, Andhra Pradesh Librarian Association, Avanigadda 🏅

🔬 Research Focus 

Dr. Kokkiligadda’s research focuses on nanomaterials for energy storage and conversion. His work integrates DNA-based nanostructures, biopolymer synthesis, and flexible energy storage films. He explores quantum dots, MXenes, and hybrid biomaterials to develop high-performance, eco-friendly supercapacitors and photocurrent devices. His expertise spans scanning electron microscopy, spectroscopy techniques, thermal vapor deposition, and electrode fabrication for batteries and PEC applications.

Publications

“Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors” 🔋

“Synthesis of Biomass-based Hybrid Nanomaterials for Sustainable Energy Conversion” 🌱

“Functionalization of Quantum Dots for High-Performance Energy Devices” ⚡

“MXenes in Flexible Supercapacitors: A Novel Approach” 🏭

“Electrode Fabrication Techniques for Advanced Energy Storage” ⚙️

“Innovative DNA Nanostructures for Photovoltaic Applications”

Conclusion:

Samanth Kokkiligadda is a highly deserving candidate for the Best Researcher Award due to his exceptional contributions to nanomaterials, energy storage, and sustainable innovations. With his expertise and growing recognition, he has the potential to become a key figure in the future of green energy research. Strengthening collaborations and increasing high-impact publications will further solidify his standing as a top-tier researcher.

Chang Hyun Sohn | Computational Fluid Dynamic | Best Researcher Award

Prof Chang Hyun Sohn | Computational Fluid Dynamic | Best Researcher Award

Professor, Kyungpook National University, South Korea

Dr. Chang-Hyun Sohn is a distinguished Professor of Mechanical Engineering at Kyungpook National University (KNU), South Korea. 🎓 With expertise in Computational Fluid Dynamics (CFD), Flow-Induced Vibration, and Particle Image Velocimetry (PIV), he has made significant contributions to thermal-fluid sciences. 🌊 He has served as a Visiting Professor at the University of Cambridge and the University of Tennessee and previously worked at the Agency for Defense Development (ADD), contributing to small jet engine development. ✈️ His extensive research output includes 134 journal papers, 64 conference proceedings, 37 books & reports, and 5 patents. 📚 Recognized with prestigious awards, he has held leadership roles in KSME, KASE, and KSCFE. 🔬 His influence spans academia, industry, and engineering societies, making him a pioneer in fluid dynamics research. 🌍

Profile

scholar

Education 🎓

Ph.D. in Mechanical Engineering, KAIST, South Korea (1991) 🏆 Focused on thermal-fluid flow and CFD modeling, advancing numerical simulations in fluid dynamics. 💡M.E. in Mechanical Engineering, KAIST, South Korea (1985) 📊 Specialized in computational modeling and flow analysis, contributing to advanced engineering applications. 🚀B.E. in Mechanical Engineering, Kyungpook National University, South Korea (1983) 🔧 Developed a strong foundation in mechanical systems, thermodynamics, and aerodynamics, shaping future research in flow dynamics. 🌪️

Professional Experience 🏢

Professor, Kyungpook National University (1994 – Present) 👨‍🏫 Leading fluid dynamics research and mentoring future engineers. 🎯Team Manager, Agency for Defense Development (ADD) (1991 – 1994) 🛩️ Spearheaded small jet engine development and military propulsion technology. 💨Visiting Professor, University of Cambridge (1996 – 1997) 🇬🇧 Collaborated on aerodynamic research in turbulence and flow modeling. 📈Visiting Professor, University of Tennessee (2005 – 2006) 🇺🇸 Advanced CFD applications in thermal-fluid sciences. 🔥Vice Dean, College of Engineering, KNU (2007 – 2008) 📌 Strengthened academic programs in mechanical and automotive engineering. 🏗️Director, Industrial-University Consortium Center (2007 – 2008) 🔄 Enhanced industry-academic collaboration for applied mechanical research. 🏭

Awards & Honors 🏆

Outstanding Paper Award, Korean Society for Computational Fluid Engineering (2010) 📜 Recognized for excellence in CFD-based thermal-fluid research. 🔥Best Paper Award, Korean Society of Mechanical Engineers (2010) ✨ Acknowledged for groundbreaking contributions to mechanical engineering innovations. 🚗Advisor of Winning Team, National Fluid Engineering Competition (2010) 🏅 Mentored students in a national-level fluid mechanics challenge. 🎯Outstanding Portfolio Instructor, KNU (2010) 👏 Honored for exceptional teaching in mechanical and aerospace engineering. 📖Invited Speaker, IBCAST (2016) & FMFP (2017) 🎤 Shared insights on fluid mechanics, CFD, and turbulence modeling in global conferences. 🌎

Research Focus 🔬

Computational Fluid Dynamics (CFD) 🖥️ Developing high-precision simulations for thermal-fluid flows, aerodynamics, and turbulence modeling. 🌪️Particle Image Velocimetry (PIV) Measurement 📸 Enhancing fluid flow visualization techniques for experimental validation of CFD models. 💡Flow-Induced Vibration (FIV) 🔊 Investigating structural interactions with fluid flow for safer, more efficient engineering systems. 🏗️Aerospace & Automotive Applications 🚀 Designing advanced propulsion systems, aerodynamic vehicles, and jet engines. ✈️Thermal-Fluid System Optimization ⚡ Improving cooling systems, energy efficiency, and industrial heat transfer mechanisms. 🔥

Publications

Investigating the Power Extraction of Applying Hybrid Pitching Motion on a Wing with Leading and Trailing Flaps

Enhanced Power Extraction via Hybrid Pitching Motion in an Oscillating Wing Energy Harvester with Leading Flap

Wetting performance analysis of porosity distribution in NMC111 layered electrodes in lithium-ion batteries using the Lattice Boltzmann Method

Reduction of delivery pressure fluctuations in a gerotor pump

Numerically Investigating the Energy-Harvesting Performance of an Oscillating Flat Plate with Leading and Trailing Flaps

Conclusion

Dr. Chang-Hyun Sohn is an outstanding candidate for the Best Researcher Award, given his exceptional contributions to CFD, leadership in mechanical engineering, and innovation in applied research. His strong publication record, international impact, and industry collaborations make him highly suitable for this prestigious recognition. Further engagement in cutting-edge fields like AI-enhanced CFD and sustainability applications could further strengthen his position as a global leader in the field.

Zhansheng Wu | Enzyme immobilization | Best Researcher Award

Prof. Zhansheng Wu | Enzyme immobilization | Best Researcher Award

Professor at  Xi’an Polytechnic University, China

🌟 Dr. Zhansheng Wu is a Vice President of the School of Environmental and Chemical Engineering at Xi’an Polytechnic University. 📚 A third-level professor, doctoral supervisor, and renowned scientist, he has led prestigious projects under China’s National Natural Science Foundation and the National Key R&D Program. 🌏 Recognized globally, he is among the top 2% of scientists worldwide and serves as an editorial board member of Biochar and Carbon Research. His contributions center around clean ecological dyeing, biological and environmental chemical industries, and material sciences.

Professional Profiles:

orcid

Education🎓 

2017.4–2017.5: University of California, Los Angeles – Study. 2015.12–2016.5: University of Turin – Visiting Scholar. 2008.8–2011.6: Beijing Institute of Technology – Doctorate in Biochemistry  2003.8–2006.6: Shihezi University – Master’s in Food Science & Engineering  1999.8–2003.6: Shihezi University – Bachelor’s in Food Science & Engineering.

Experience🛠️ 

Vice President and Professor, Xi’an Polytechnic University.  Chief Scientist of Shaanxi Province’s “Qin Chuangyuan” team  Project Leader for National Key Research & Development Plan (2021–2024). Editorial Board Member for Biochar and Carbon Research. Visiting Scholar, University of Turin (2015–2016).

Awards and Honors🏅

Approved by National Natural Science Foundation of China – Young Talents Fund.  Listed in the Top 100,000 Scientists and Top 2% globally.  Leader of Shaanxi’s “Qin Chuangyuan” Scientist + Engineer Team. Published in top journals like Chemical Engineering Journal (IF > 16.7).

Research Focus🔍

Clean ecological dyeing and finishing technologies.  Development of biochar-based bactericide systems for soil improvement. Photocatalysis for environmental remediation and water treatment. Sustainable agricultural practices with biochar innovations. Exploring chemical-material industry advancements.

✍️Publications Top Note :

  • Biochar and Environmental Applications:
    • Prediction of biochar yield and specific surface area using advanced algorithms.
    • Multi-functional biochar composites for pollution control and fertilizer applications.
  • Metal-Organic Frameworks (MOFs):
    • Amino-functionalized MOFs for enzyme stability and organic pollutant degradation.
    • Hollow MOFs designed for enzyme immobilization and rare ginsenoside synthesis.
  • Photocatalysis and Functional Materials:
    • Development of heterojunction photocatalysts for efficient degradation of pollutants.
    • N-doped Ti3C2Tx-MXene-modified photocatalysts for enhanced photocatalytic ammonia synthesis.
  • Biocontrol and Environmental Microbiology:
    • Identification and genetic characterization of biocontrol strains with siderophilic properties.
    • Bioreduction of hexavalent chromium using Bacillus subtilis enhanced with humic acid.
  • Innovative Enzyme Immobilization:
    • Enhancements in enzyme loading and activity for industrial pollutant degradation.
  • Nanomaterials and Wastewater Treatment:
    • Strategies leveraging BaTiO3 piezocatalysis for vibration energy harvesting and water purification.
    • Functionalized ZnO/ZnSe composites for organic dye wastewater treatment.
  • Agricultural and Environmental Stress:
    • Applications of microcapsules for Capsicum growth under salt stress.

Conclusion

Zhansheng Wu stands as a stellar candidate for the Best Researcher Award due to his groundbreaking work in environmental chemical engineering and materials science. His extensive contributions to sustainable technologies, particularly in photocatalysis and biochar systems, have significantly advanced global environmental goals. While there is room to enhance the societal impact and commercialization aspects of his research, his academic excellence, leadership in high-value projects, and international recognition firmly establish him as a deserving contender for this prestigious award.

Xiaolin Yang | CImage analysis | Best Researcher Award

Dr. Xiaolin Yang | Image analysis | Best Researcher Award

Dr at China university of mining and technology, China

Xiaolin Yang is a skilled Business Analyst and Postdoctoral Researcher at Henan Investment Group. With a solid background in mineral process engineering, his expertise spans industry research, project management, and production optimization. Xiaolin holds a Bachelor’s and a Ph.D. in Mineral Process Engineering from the China University of Mining and Technology, specializing in mineral processing, machine learning, and image analysis. His dedication to academic excellence and practical application makes him a valuable asset in the mineral industry.

Publication Profile

scopus

Education🎓 

.Bachelor of Mineral Process Engineering | China University of Mining and Technology, 2015–2019 | Focus: Mineral separation methods and equipment. Doctor of Mineral Process Engineering | China University of Mining and Technology, 2019–2024 | Research areas: Mineral processing, machine learning, image analysis. Xiaolin’s academic journey emphasized innovation in mineral separation, blending engineering with data science to improve mineral processing efficiency and accuracy.

Experience💼 

Postdoctoral Researcher | Henan Investment Group, 2024–Present | Xiaolin’s role involves comprehensive industry research, preparing assessment reports, and offering investment insights and recommendations. His project management tasks focus on feasibility assessments and evaluating the effectiveness of production processes, aiming to optimize industrial production and implement innovative solutions in mineral processing.

Awards and Honors🏆 

Published Author | Xiaolin has authored notable academic articles, such as in Journal of Materials Research and Technology (2021), Energy (2022), and Expert Systems with Applications (2024). His work, recognized for its significance in mineral processing and machine learning, highlights his expertise in utilizing advanced algorithms for practical industry challenges.

Research Focus🔍

Research Interests | Xiaolin’s research delves into mineral processing, machine learning applications, and image analysis. His studies, including deep learning for ash determination in coal flotation, explore novel algorithms to enhance mineral processing accuracy, bridging engineering and artificial intelligence for industrial optimization.

Publication  Top Notes

Multi-scale neural network for accurate determination of ash content in coal flotation concentrate

Authors: Yang, X., Zhang, K., Thé, J., Tan, Z., Yu, H.

Journal: Expert Systems with Applications, 2025, 262, 125614

Description: This paper presents a multi-scale neural network model that accurately determines ash content in coal flotation concentrate using froth images, leveraging deep learning to enhance mineral processing efficiency.

STATNet: One-stage coal-gangue detector for real industrial applications

Authors: Zhang, K., Wang, T., Yang, X., Tan, Z., Yu, H.

Journal: Energy and AI, 2024, 17, 100388

Description: The STATNet model is introduced as a coal-gangue detection system using a one-stage deep learning algorithm, tailored for industrial application with a focus on real-time processing.

COFNet: Predicting surface area of covalent-organic frameworks

Authors: Wang, T., Yang, X., Zhang, K., Tan, Z., Yu, H.

Journal: Chemical Physics Letters, 2024, 847, 141383

Description: COFNet utilizes deep learning to predict the specific surface area of covalent-organic frameworks, combining structural image analysis with statistical features for accurate predictions.

Enhancing coal-gangue detection with GAN-based data augmentation

Authors: Zhang, K., Yang, X., Xu, L., Tan, Z., Yu, H.

Journal: Energy, 2024, 287, 129654

Description: This study employs GAN-based data augmentation and a dual attention mechanism to improve coal-gangue object detection, aiming to refine accuracy in complex industrial environments.

Multi-step carbon price forecasting using hybrid deep learning models

Authors: Zhang, K., Yang, X., Wang, T., Tan, Z., Yu, H.

Journal: Journal of Cleaner Production, 2023, 405, 136959

Description: A hybrid deep learning model for multi-step forecasting of carbon prices is proposed, integrating multivariate decomposition to enhance predictive reliability.

PM2.5 and PM10 concentration forecasting with spatial–temporal attention networks

Authors: Zhang, K., Yang, X., Cao, H., Tan, Z., Yu, H.

Journal: Environment International, 2023, 171, 107691

Description: This article introduces a spatial–temporal attention mechanism for PM2.5 and PM10 forecasting, using convolutional neural networks with residual learning to tackle air quality predictions.

Ash determination of coal flotation concentrate using hybrid deep learning model

Authors: Yang, X., Zhang, K., Ni, C., Tan, Z., Yu, H.

Journal: Energy, 2022, 260, 125027

Description: This work features a hybrid model that utilizes deep learning and attention mechanisms to determine ash content in coal flotation, contributing to process optimization.

Influence of cation valency on flotation of chalcopyrite and pyrite

Authors: Yang, X., Bu, X., Xie, G., Chehreh Chelgani, S.

Journal: Journal of Materials Research and Technology, 2021, 11, pp. 1112–1122

Description: This comparative study explores how different cation valencies affect chalcopyrite and pyrite flotation, contributing to better separation techniques in mineral processing.

Conclusion

Xiaolin Yang is a compelling candidate for the Best Researcher Award. His strengths in applying AI and image analysis to mineral processing reflect a unique skill set that is highly relevant for advancing research and industry practices. With further interdisciplinary work and expanded research visibility, Xiaolin is well-positioned to make impactful contributions and earn recognition in his field.

Jinxia Zhang | Defect detection | Best Researcher Award

Assoc Prof Dr. Jinxia Zhang | Defect detection | Best Researcher Award

 Associate Professor at Southeast University, China

Assoc Prof Dr. Jinxia Zhang is an Associate Professor at Southeast University, Nanjing, China, specializing in saliency detection, visual attention, computer vision, and deep learning. With a Ph.D. in Pattern Recognition and Intelligent Systems from Nanjing University of Science and Technology, he has extensive experience in artificial intelligence research. His journey includes time as a visiting scholar at Harvard Medical School and numerous prestigious research projects funded by national foundations. Assoc Prof Dr. Jinxia Zhang leads key AI initiatives, driving innovations in multimodal understanding, defect analysis, and object detection. His academic and professional contributions have positioned him as a prominent researcher in visual computing and AI.

Publication Profile

scholar

Education 🎓

Assoc Prof Dr. Jinxia Zhang  earned his M.Sc. and Ph.D. in Pattern Recognition and Intelligent Systems from Nanjing University of Science and Technology in 2015. His doctoral research laid a foundation for his interest in artificial intelligence, particularly in areas like visual attention and computer vision. Prior to his postgraduate work, he completed his B.Sc. in Computer Science and Technology at the same institution in 2009, where he developed a solid understanding of computational theories and applications. His education has provided him with both theoretical knowledge and practical skills that are central to his current research on AI and deep learning.Assoc Prof Dr. Jinxia Zhang  is currently an Associate Professor at Southeast University, Nanjing, a role he has held since 2019. From 2016 to 2019, he served as a Lecturer at the same university, where he significantly contributed to AI teaching and research. His early career included a prestigious stint as a Visiting Scholar at Harvard Medical School, USA, between 2012 and 2014, where he collaborated on cutting-edge AI-driven healthcare projects. His international exposure and academic roles have enriched his teaching and research, particularly in computer vision and AI, making him a key figure in the field.

Awards and Honors  🏆

Assoc Prof Dr. Jinxia Zhang  has received numerous accolades for his research excellence and contributions to the field of AI. He was awarded the National Natural Science Foundation of China grant in 2018 for his project on salient object detection. In 2017, he secured the Jiangsu Natural Science Foundation Grant for his innovative research on visual cognitive characteristics. Additionally, his work in defect diagnosis for photovoltaic modules was recognized as part of the National Key Research and Development Plan. These prestigious awards underscore his pioneering contributions in artificial intelligence and computer vision research.

Research Focus  🔬

Assoc Prof Dr. Jinxia Zhang ‘s research focuses on the intersection of visual attention, saliency detection, and deep learning within artificial intelligence. He leads projects on multimodal understanding and e-commerce applications, and is a Principal Investigator for research into AI-based fruit and vegetable recognition. His earlier work in defect diagnosis for photovoltaic modules and salient object detection in complex scenes has been supported by prominent grants. His innovative approach combines perceptual grouping and visual attention to develop cutting-edge solutions in computer vision, making significant advancements in how machines perceive and interact with visual data.

Conclusion

The candidate demonstrates an impressive body of work across several domains of artificial intelligence, particularly in salient object detection, visual cognition, and multimodal learning. Their academic achievements, project leadership, and dedication to advancing AI make them a strong contender for the Best Researcher Award. By continuing to broaden their industry collaborations and expanding the scope of their research impact, they can become a globally recognized leader in AI and computer vision.

Publication  Top Notes

  • Towards the Quantitative Evaluation of Visual Attention Models (2015)
    • Citation: 75
    • Journal: Vision Research
    • Key Contributors: Z. Bylinskii, E.M. DeGennaro, R. Rajalingham, H. Ruda, J. Zhang, J.K. Tsotsos
    • Highlights: Focuses on quantitative approaches to evaluate visual attention models, essential for improving saliency detection.
  • A Novel Graph-Based Optimization Framework for Salient Object Detection (2017)
    • Citation: 63
    • Journal: Pattern Recognition
    • Key Contributors: J. Zhang, K.A. Ehinger, H. Wei, K. Zhang, J. Yang
    • Highlights: Presents a new graph-based optimization method for enhancing the accuracy of salient object detection.
  • Salient Object Detection by Fusing Local and Global Contexts (2020)
    • Citation: 60
    • Journal: IEEE Transactions on Multimedia
    • Key Contributors: Q. Ren, S. Lu, J. Zhang, R. Hu
    • Highlights: This paper integrates both local and global visual contexts to refine salient object detection in multimedia applications.
  • Inter-Hour Direct Normal Irradiance Forecast with Multiple Data Types and Time-Series (2019)
    • Citation: 36
    • Journal: Journal of Modern Power Systems and Clean Energy
    • Key Contributors: T. Zhu, H. Zhou, H. Wei, X. Zhao, K. Zhang, J. Zhang
    • Highlights: Introduces a time-series forecasting model for direct normal irradiance, benefiting renewable energy systems.
  • Winter is Coming: How Humans Forage in a Temporally Structured Environment (2015)
    • Citation: 35
    • Journal: Journal of Vision
    • Key Contributors: D. Fougnie, S.M. Cormiea, J. Zhang, G.A. Alvarez, J.M. Wolfe
    • Highlights: Examines human visual foraging behavior in dynamically changing environments.
  • Domain Adaptation for Epileptic EEG Classification Using Adversarial Learning and Riemannian Manifold (2022)
    • Citation: 25
    • Journal: Biomedical Signal Processing and Control
    • Key Contributors: P. Peng, L. Xie, K. Zhang, J. Zhang, L. Yang, H. Wei
    • Highlights: This paper explores domain adaptation techniques to improve epileptic EEG classification through adversarial learning.
  • A Lightweight Network for Photovoltaic Cell Defect Detection in Electroluminescence Images (2024)
    • Citation: 23
    • Journal: Applied Energy
    • Key Contributors: J. Zhang, X. Chen, H. Wei, K. Zhang
    • Highlights: Develops a lightweight neural network for detecting defects in photovoltaic cells using knowledge distillation.
  • Salient Object Detection via Deformed Smoothness Constraint (2018)
    • Citation: 21
    • Journal: IEEE International Conference on Image Processing (ICIP)
    • Key Contributors: X. Wu, X. Ma, J. Zhang, A. Wang, Z. Jin
    • Highlights: Proposes a deformed smoothness constraint approach for improving salient object detection.
  • Character Recognition via a Compact Convolutional Neural Network (2017)
    • Citation: 20
    • Conference: International Conference on Digital Image Computing
    • Key Contributors: H. Zhao, Y. Hu, J. Zhang
    • Highlights: Develops a compact CNN for robust character recognition in natural scene images.
  • A Prior-Based Graph for Salient Object Detection (2014)
    • Citation: 23
    • Conference: IEEE International Conference on Image Processing (ICIP)
    • Key Contributors: J. Zhang, K.A. Ehinger, J. Ding, J. Yang
    • Highlights: Uses a prior-based graph model to enhance the performance of salient object detection algorithms.

Md Mahfuzur Rahman | Cellulose | Best Researcher Award

Dr.  Bangladesh University of Textiles, Bangladesh

I am currently pursuing a B.Sc. degree in Textile Engineering with a specialization in Industrial and Production Engineering at the Bangladesh University of Textiles (BUTEX) in Bangladesh. Since 2018, I have been working as a research assistant at both BUTEX and North South University (NSU). My research interests include Nanomaterials & Nanomechanics, Semiconductor Electrophysics, Magnetic Materials, Wearable Smart Textiles, Biomedical applications, Thin Film Magnetism, First-principle DFT studies, and Engineered 2D Quantum Materials. I have previously conducted research on ferrite nanomaterials, synthesizing and characterizing their properties, as well as sustainable textiles. I have recently been working on smart textiles and experimental and DFT analysis of perovskite materials. Moreover, I actively participated in various clubs, including BUTEX Sports Club and BUTEX Youth Development Club, which honed my leadership and event management skills. From an early age, mathematics has been my favorite subject, and I have actively participated in the Bangladesh Mathematical Olympiad, achieving two awards. Additionally, in 2016, I secured the 12th position in the Bangladesh Physics Olympiad. I also participated at Asian Pacific Mathematical Olympiad. My penchant for creative endeavors inspired my research journey, which began in my first year of undergraduate studies.

Professional Profiles:

🎯 Career Objective

I aim to be a valuable professional contributing to institutions and society through creative and impactful research. Seeking a research-oriented position to leverage my knowledge and skills, I thrive in challenging environments that foster continuous learning. My passion lies in Material Science related research.

🎓 Education

Bangladesh University of Textiles, Dhaka, BangladeshB.Sc. in Textile Engineering (Specialization in Industrial & Production Engineering) (2018-2023)CGPA: 3.16/4Rajshahi Govt. City College, Rajshahi, BangladeshHigher Secondary Certificate (2017)GPA: 5/5Agrani School and College, Rajshahi, BangladeshSecondary School Certificate (2015)GPA: 5/5

💻 Technical Qualifications

Computer Skills

C, Python, MS Office, OriginLab Software, FullProf Software, Imagej, CAD, CATIA, CASTEP, SolidWorks

Experimental Techniques

X-ray Diffraction (XRD), FTIR, FESEM, Transmission Electron Microscopy, UV-Visible Spectroscopy, Vibrating Sample Magnetometer, Universal Testing Machine, TGA, DTA

Theoretical Techniques

Rietveld Analysis, DFT Investigation, Stress and Displacement Analysis

🔬 Research Interests

Wearable Smart TextilesBiomedicalNanomaterials & NanomechanicsSemiconductor Electro-physicsAdditive ManufacturingThin Film MagnetismFirst-Principle DFT StudyPhotovoltaics

Strengths for the Award:

  • Research Contributions: The researcher should have a strong portfolio of impactful publications, such as high-quality journal articles, conference papers, or patents, that have significantly contributed to their field.
  • Innovation: The researcher’s work should demonstrate a high level of innovation, leading to new discoveries or advancements in technology, methodology, or understanding in their area of expertise.
  • Collaboration and Leadership: The researcher should have a track record of leading or collaborating on interdisciplinary projects, demonstrating their ability to work with a diverse range of experts.
  • Recognition and Awards: Previous recognition through awards, grants, or invitations to speak at conferences can highlight the researcher’s influence and reputation in their field.
  • Impact on Society: The research should have a tangible impact on society, such as applications in industry, policy changes, or contributions to solving real-world problems.

Areas for Improvement:

  • Broader Impact: While the researcher may have made significant contributions to a specific field, they may need to expand the reach of their work to have a broader impact across multiple disciplines.
  • Communication and Outreach: The ability to communicate research findings to a non-specialist audience, including the general public, policymakers, or industry stakeholders, is increasingly important. Improvement in this area could enhance the visibility and impact of their work.
  • Diversity and Inclusion: The researcher could focus more on mentoring underrepresented groups in their field or engaging in initiatives that promote diversity and inclusion in science and research.
  • Sustainability and Ethics: Depending on the research field, the researcher may need to incorporate more sustainable practices or address ethical considerations in their work.

✍️Publications Top Note :

Cellulose Fiber from Jute and Banana Fiber:

Publication: “Physical properties of isolated cellulose fiber from jute and banana fiber through kraft pulping: Potential applications in packaging and regenerated fibers.”

Journal: SPE Polymers (2024).

Focus: Investigation of the physical properties of cellulose fibers derived from jute and banana through kraft pulping. The study explores potential applications in packaging and the development of regenerated fibers.

Electromagnetic Properties of Al3+ Substituted Ni–Co Ferrites:

Publication: “Rietveld refined structural and sintering temperature dependent electromagnetic properties of Al3+ substituted Ni–Co ferrites prepared through sol–gel auto combustion method for high-frequency and microwave devices.”

Journal: Journal of Materials Science: Materials in Electronics (2024).

Focus: This research delves into the electromagnetic properties of Al3+ substituted Ni-Co ferrites, emphasizing their application in high-frequency and microwave devices.

Triboelectric Nanogenerators:

Publication: “Carbon-based Textile structured Triboelectric Nanogenerators for Smart Wearables.”

Status: Preprint (2024).

Focus: Development of carbon-based textile triboelectric nanogenerators aimed at powering smart wearable devices.

Magnetic and Optoelectronic Properties of Ni-Cu Spinel Ferrites:

Publication: “Magnetic, optoelectronic, and rietveld refined structural properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites: An experimental and DFT based study.”

Journal: Journal of Magnetism and Magnetic Materials (2023).

Focus: Study of the magnetic, optoelectronic, and structural properties of Ni-Cu spinel ferrites, including experimental and theoretical (DFT) approaches.

Dielectric and Electrical Transport in Ni-Cu Spinel Ferrites:

Publication: “Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol–gel route.”

Journal: Results in Physics (2022).

Focus: Analysis of dielectric and electrical transport properties in Al3+ substituted Ni-Cu spinel ferrites synthesized using the sol-gel method.

Structural and Magnetic Properties of Ni-Zn Ferrites:

Publication: “Structural, magnetic, and electrical properties of Ni0.38−xCu0.15+yZn0.47+x−yFe2O4 synthesized by sol–gel auto-combustion technique.”

Journal: Journal of Materials Science: Materials in Electronics (2021).

Conclusion:

  • Suitability for the Award: Based on the evaluation of strengths and areas for improvement, the researcher appears highly suitable for the “Best Researcher Award.” Their significant contributions to their field, coupled with a track record of innovation and leadership, make them a strong candidate.
  • Final Recommendation: While the researcher is highly qualified, they could further enhance their candidacy by expanding the impact of their work, engaging more with the broader community, and contributing to initiatives that promote diversity and sustainability in research.

Tao Wang | Geopolymer materials | Best Researcher Award

Mr.  Nanjing Hydraulic Research Institute, China

The research presents a method for developing high-strength, low-carbon geopolymer mortar using fly ash and slag under ambient curing conditions. It addresses the challenge of low strength in fly ash-based geopolymers by analyzing the impact of slag content on mechanical properties. The study also investigates the correlation between microstructural and macroscopic properties using grey relational analysis and assesses the environmental and economic benefits of varying slag content. This work offers practical guidance for advancing sustainable, high-performance geopolymer materials, supported by the National Natural Science Foundation of China.

Professional Profiles:

🏗️ About Our Research

🔍 Our study introduces an innovative method to develop high-strength geopolymer mortar that boasts low-carbon and environmentally friendly characteristics under ambient curing conditions. The research delves into the mechanical properties, microstructural attributes, and environmental benefits of this mortar. 🌍

🚧 Tackling the Strength Challenge

💡 Fly ash-based geopolymer mortar is celebrated for its eco-friendly benefits, but achieving high strength remains a challenge in modern structural engineering. While most studies focus on high-temperature curing, our research uniquely explores the influence of slag content on the mechanical properties of geopolymer mortar under ambient conditions.

🔬 Deep Dive: Microstructural and Mechanical Properties

📊 We conducted a thorough analysis of the microstructural performance and established a framework using the grey relational analysis method to correlate these findings with the mortar’s macroscopic mechanical properties. Additionally, we evaluated the environmental and economic impacts of varying slag content through statistical analysis.

🌱 Towards a Sustainable Future

🌱 This work provides valuable insights and practical guidance for the advancement of low-carbon, environmentally friendly, and high-performance geopolymer mortar, paving the way for future developments in sustainable construction materials.

🔗 Research Support

🏆 This research was generously supported by the National Natural Science Foundation of China (SN: 52171270, 51879168) and the Key Funded Projects of the National Natural Science Foundation of China-Regional Innovation and Development Joint Fund (U23A20672). We confirm that this work has not been submitted elsewhere for publication, and all authors have approved the enclosed manuscript.

Strengths for the Award

  1. Innovative Approach: The research introduces a novel method for developing high-strength geopolymer mortar under ambient curing conditions, addressing a crucial challenge in the field. The emphasis on low-carbon and environmentally friendly characteristics is timely and aligns with global sustainability goals.
  2. Comprehensive Analysis: The study offers a thorough investigation of both the mechanical properties and microstructural performance of the geopolymer mortar. The use of grey relational analysis to establish correlations between microstructural and mechanical properties adds depth to the research.
  3. Environmental and Economic Assessment: The inclusion of environmental and economic impact assessments demonstrates a holistic approach, considering not just the technical performance but also the broader implications of the material.
  4. Support from National Foundations: The research is backed by prestigious funding sources, such as the National Natural Science Foundation of China, which underscores the importance and credibility of the work.

Areas for Improvement

  1. Expansion of Application Scenarios: While the research focuses on ambient curing conditions, exploring the applicability of the developed mortar in different environmental conditions or comparing it with other curing methods could provide more comprehensive insights.
  2. Long-term Performance Evaluation: The study could benefit from a long-term performance analysis, including durability and sustainability over extended periods, to further validate the practical application of the geopolymer mortar.
  3. Broader Comparative Analysis: Including a broader range of comparisons with other high-strength construction materials could strengthen the argument for the practical adoption of geopolymer mortar in various structural engineering scenarios.

 

✍️Publications Top Note :

Development of High-strength Geopolymer Mortar Based on Fly Ash-slag: Correlational Analysis of Microstructural and Mechanical Properties and Environmental Assessment”

Authors: Wang, T., Fan, X., Gao, C.

Journal: Construction and Building Materials (2024), 441, 137515

 

“Performance of Geopolymer Paste under Different NaOH Solution Concentrations”

Authors: Wang, T., Fan, X., Gao, C., Qu, C.

Journal: Magazine of Concrete Research (2024)

 

“Shear Behavior and Strength Prediction of HFRP Reinforced Concrete Beams without Stirrups”

Authors: Gu, Z., Hu, Y., Gao, D., Wang, T., Yang, L.

Journal: Engineering Structures (2023), 297, 117030

 

“Effect of Different Loading Rates on the Fracture Behavior of FRP-Reinforced Concrete”

Authors: Liu, J., Fan, X., Wang, T., Qu, C.

Journal: Fatigue and Fracture of Engineering Materials and Structures (2023), 46(12), pp. 4743–4759

 

“The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review”

Authors: Wang, T., Fan, X., Gao, C., Liu, J., Yu, G.

Journal: Polymers (2023), 15(4), 827

 

“Database-based Error Analysis of Calculation Methods for Shear Capacity of FRP-Reinforced Concrete Beams without Web Reinforcement”

Authors: Wang, T., Fan, X., Gao, C., Qu, C., Liu, J.

Journal: Journal of Southeast University (English Edition) (2023), 39(3), pp. 301–313

 

“Size Effect Theory on Shear Strength of RC Cantilever Beams without Stirrups”

Authors: Jin, L., Wang, T., Du, X.-L.

Journal: Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics (2020), 37(4), pp. 396–404

 

“Size Effect Theory on Shear Failure of RC Cantilever Beams”

Authors: Jin, L., Wang, T., Du, X.-L., Xia, H.

Journal: Gongcheng Lixue/Engineering Mechanics (2020), 37(1), pp. 53–62

 

“Size Effect in Shear Failure of RC Beams with Stirrups: Simulation and Formulation”

Authors: Jin, L., Wang, T., Jiang, X.-A., Du, X.

Journal: Engineering Structures (2019), 199, 109573

 

Conclusion

Tao Wang’s research on high-strength geopolymer mortar is innovative and impactful, addressing key challenges in the construction industry related to sustainability and strength. The study’s comprehensive analysis and consideration of environmental impacts make it a strong contender for the “Best Researcher Award.” However, expanding the research scope to include more comparative and long-term analyses could further enhance its significance.

Durga Ghosh | energy | Best Researcher Award

Dr. Durga Ghosh | energy | Best Researcher Award

Dr. North Carolina State University, United States

Durga Prasad Ghosh is a postdoctoral scholar specializing in mechanical engineering, currently at North Carolina State University. He holds a Ph.D. from the Indian Institute of Technology, Patna, and an M.Tech. in Thermal Engineering from Kalinga Institute of Industrial Technology. Ghosh has extensive research experience, having worked on projects related to thermal energy storage, water desalination, and evaporator design. He has taught courses at Oregon State University and Gandhi Institute of Excellent Technocrats. His notable achievements include securing research funding, publishing in peer-reviewed journals, and being a semi-finalist in the American-Made Geothermal Lithium Extraction Prize.

 

Professional Profiles:

Education🎓

Ph.D., Mechanical Engineering
Indian Institute of Technology, Patna, India
June 2015 – October 2019CGPA: 8.25/10🎓 M.Tech., Thermal Engineering
Kalinga Institute of Industrial Technology, India
June 2012 – June 2014CGPA: 9.15/10 (Highest in the department)🎓 B.Tech., Mechanical Engineering
Gandhi Institute of Engineering Technology, India
August 2007 – July 2011CGPA: 7.42/10

Awards and Achievements 🏆

2021: Selected as one of the semifinalists in “The American-Made Geothermal Lithium Extraction Prize” and gained funding of $40,000. 018: Secured 1st position in “My Research in Three Minutes” competition on 7th Research Scholar’s Day, IIT Patna, 2018. 2014: Received Vice Chancellor Silver Medal for securing the highest mark in Thermal Engineering during M.Tech. 2004: Won a GOLD medal at All Orissa Geography Talent Test, 2004.
2003: Secured an All India rank of 323 in the 3rd National Science Olympiad, 2003.

Leadership and Service🔧

2019 – 2023: Led a team of Postdocs, graduate, and undergraduate students across four universities to successfully complete a multi-million dollar DOE project. 🔧 2019: Volunteered in organizing the 8th Research Scholar’s Day, IIT Patna, 2019. 2017: Volunteered in organizing the 6th Research Scholar’s Day, IIT Patna, 2017. 2013: Volunteered in organizing the 1st KIIT International Symposium on Advances in Automotive Technology (KIIT SAAT), 2013.  2008 – 2009: Served as an Office Bearer of the Mechanical Engineering Student Association (MESA), GIET, Gunupur, India.

Professional Experience

🛠️ Postdoctoral Scholar, Mechanical Engineering
North Carolina State University, Raleigh, NC, USA
April 2023 – PresentLeading the design, fabrication, and experimentation of nature-inspired variable capacity evaporators for low Global Warming Potential (GWP) refrigerants.Enhancing condensation via optimized gradient wick structures.🛠️ Postdoctoral Scholar, Mechanical Engineering
University of Michigan, Ann Arbor, MI, USA
April 2023 – April 2024Led projects on thermal energy storage, supervising 2 graduates and 3 undergraduates.Studied hydration kinetics of salt hydrates in a through-flow reactor for thermochemical energy storage.Analyzed data to establish trade-offs between specific power and specific energy.Utilized CAD software SolidWorks for 3D modeling and performed thermal simulation using COMSOL.🛠️ Instructor of Record, Energy System Engineering
Oregon State University, Bend, OR, USA
January 2023 – March 2023Taught Heat Transfer (ME332) for the winter term.Developed course content and conducted review sessions.Managed course materials and assignments on CANVAS.🛠️ Postdoctoral Scholar, Mechanical Engineering
Oregon State University, Bend, OR, USA
December 2019 – April 2023Led a team working on a novel Zero Liquid Discharge (ZLD) humidification-dehumidification water desalination system.Managed contractual milestones for multimillion-dollar US DOE awards.Conducted independent research and supervised PhD, graduate, and undergraduate students.🛠️ Project Fellow, Mechanical Engineering
Indian Institute of Technology, Patna, India
December 2014 – October 2019Designed and fabricated experimental setups for flow boiling in nanostructured microchannels.Performed Fast Fourier Transform Analysis in MATLAB.🛠️ Assistant Professor, Mechanical Engineering
Gandhi Institute of Excellent Technocrats, Bhubaneswar, India
July 2014 – November 2014Taught undergraduate courses on Basic Thermodynamics and Heat Transfer.Developed course content and conducted review sessions.

✍️Publications Top Note :

Abstract: Anti-fouling Rotating Polymer-Based Heat Exchanger for Zero Liquid Discharge Humidification-Dehumidification Desalination

Authors: Ghosh, D.P., Hassan, M., Dennis, S.J., Elhashimi-Khalifa, M.A., Abbasi, B. Journal: Water Research, 2024, 258, 121749

Fouling Mechanism in Airblast Atomizers and Its Suppression for Water Desalination

Authors: Sharma, D., Ghosh, D.P., Dennis, S.J., Abbasi, B.

Journal: Water Research, 2022, 221, 118726

Development of an Anti-Clogging Perforated Plate Atomizer for a Zero Liquid Discharge Humidification-Dehumidification Desalination System

Authors: Sharma, D., Ghosh, D.P., Rote, J.N., Zhang, X., Abbasi, B.

Journal: Desalination, 2021, 515, 115195

Mitigation of Transient Fluctuations During Flow Boiling in Microchannels via Adaptive Vapor Venting

Authors: Ghosh, D.P., Sharma, D., Abbasi, B.

Journal: IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(10), pp. 1645–1654

An Ingenious Fluidic Capacitor for Complete Suppression of Thermal Fluctuations in Two-Phase Microchannel Heat Sinks

Authors: Ghosh, D.P., Sharma, D., Kumar, A., Saha, S.K., Raj, R.

Journal: International Communications in Heat and Mass Transfer, 2020, 110, 104347

Facile Fabrication of Nanostructured Microchannels for Flow Boiling Heat Transfer Enhancement

Authors: Ghosh, D.P., Sharma, D., Mohanty, D., Saha, S.K., Raj, R.

Journal: Heat Transfer Engineering, 2019, 40(7), pp. 537–548

Thermohydraulic Characterization of Flow Boiling in a Nanostructured Microchannel Heat Sink with Vapor Venting Manifold

Authors: Sharma, D., Ghosh, D.P., Saha, S.K., Raj, R.

Journal: International Journal of Heat and Mass Transfer, 2019, 130, pp. 1249–1259