Xiankun Zhang | materials science | Best Researcher Award

Prof. Xiankun Zhang | materials science | Best Researcher Award

professor at  University of Science and Technology Beijing, China

📜 Xiankun Zhang is a leading researcher at the University of Science and Technology Beijing, specializing in two-dimensional materials, optoelectronic devices, and transition metal dichalcogenides. With over 44 publications and a high h-index of 22, Zhang has made significant contributions to advanced functional materials and nanoscale photodetectors. Passionate about integrating innovation into silicon-compatible technology, Zhang is a key figure in the field of material science.

Professional Profiles:

Education🎓

PhD in Material Science, University of Science and Technology Beijing, China Master’s Degree in Physics, Tsinghua University, China Bachelor’s Degree in Applied Physics, Peking University, China Focused on emerging materials and their optoelectronic applications, Zhang’s academic journey reflects a strong foundation in interdisciplinary research.

Experience💼 

Senior Researcher, University of Science and Technology Beijing Visiting Scholar, MIT Nano Research Lab Research Fellow, National Center for Nanoscience and Technology Zhang has actively collaborated with global leaders in the nanotechnology domain, showcasing excellence in research and innovation.

Awards and Honors🏅

National Science Fund for Distinguished Young Scholars Outstanding Researcher in Nanotechnology, China Materials Congress Highly Cited Researcher Award, Clarivate Analytics Recognized for transformative work in nanoscale photodetectors and 2D materials.

Research Focus🔬

Two-dimensional materials and heterojunctionsHigh-efficiency photodetectorsTransition metal dichalcogenidesSilicon-compatible optoelectronics Zhang’s work focuses on bridging the gap between traditional materials and next-generation electronic devices.

✍️Publications Top Note :

“Poly (4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode”
Published in Nature Communications, this paper has been cited 234 times, emphasizing a groundbreaking sulfur vacancy healing strategy for improved photodiodes.

“Manganese-Based Materials for Rechargeable Batteries Beyond Lithium-Ion”
Published in Advanced Energy Materials, this work, cited 153 times, advances manganese-based materials for next-generation batteries.

“Near-Ideal van der Waals Rectifiers Based on All-Two-Dimensional Schottky Junctions”
Another Nature Communications article, cited 153 times, discusses advancements in two-dimensional rectifiers.

“Interfacial Charge Behavior Modulation in Perovskite Quantum Dot-Monolayer MoS2 Heterostructures”
With 148 citations, this Advanced Functional Materials paper explores charge behavior in hybrid heterostructures.

“Defect-Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters”
Published in Advanced Materials, cited 134 times, highlighting defect engineering in MoS2 for logic applications.

“Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays”
An ACS Nano publication with 116 citations, focusing on heterostructure arrays for enhanced device performance.

“Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS–MoS2 Heterostructures”
Featured in Nano Letters, this study has 113 citations, addressing high-performance infrared photodetection.

“Hidden Vacancy Benefit in Monolayer 2D Semiconductors”
Advanced Materials work with 86 citations, detailing vacancy benefits in 2D semiconductors.

“Piezotronic Effect on Interfacial Charge Modulation in Mixed-Dimensional van der Waals Heterostructures”
Cited 82 times in Nano Energy, examining the piezotronic effect for flexible photodetectors.

“Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes”
Published in ACS Nano, cited 80 times, discussing self-healing junctions.

Conclusion

Xiankun Zhang’s prolific research output, significant citations, and impactful work in advanced materials science make him a strong candidate for the Best Researcher Award. Addressing areas such as broader dissemination, interdisciplinary applications, and community engagement could further solidify his standing as a leader in his field. His research aligns well with the award’s goals of recognizing innovation, collaboration, and impact in academia.

Long Chen | Carbon Fiber Reinforced Plastic Laser drilling | Best Researcher Award

Dr. Long Chen | Carbon Fiber Reinforced Plastic Laser drilling | Best Researcher Award

Research Associate at  Huazhong University of Science and Technology, China

🎓 Long Chen is a Research Associate at Huazhong University of Science and Technology and Deputy Director of the R&D Center at Zhejiang Huagong Guanggrun Intelligent Equipment Technology Co., Ltd. (since 2021). 🔬 His research focuses on laser processing technology for carbon fiber composite materials (CFRP). 💡 Long has developed advanced laser processing equipment used in critical aerospace components like satellite antenna covers, engine casings, and missile shells. 📚 He has authored numerous SCI-indexed papers and holds five authorized patents among 14 applications. 🌟 Long actively participates in national and provincial research projects, making significant contributions to the field of intelligent manufacturing.

Professional Profiles:

Education  🎓

PhD in Engineering, Huazhong University of Science and Technology, 2019–2024. 🎓 Bachelor’s Degree in Mechanical Engineering, Top-tier Chinese Institution (Year N/A). 📜 Successfully defended doctoral thesis in 2024 on CFRP laser processing technology. 📚 Academic expertise covers mechanisms of laser interaction with advanced materials, intelligent equipment design, and status monitoring.

Experience  💼

Deputy Director, Zhejiang Huagong Guanggrun R&D Center (2021–present). 💡 Spearheaded innovation funds for CFRP laser processing. 📊 Led 12 enterprise technology development projects. 🌐 Participated in R&D for significant aerospace engineering equipment, contributing to an award-winning project.

Awards and Honors  🏆

First Prize for Science and Technology Progress, Hubei Province, for contributions to aerospace engineering. 🌟 Recognition for advancements in CFRP high-performance manufacturing. 📜 Active member of the China Mechanical Engineering Society and China Society for Composite Materials.

Research Focus  🔬

Exploring acoustic emission signals in CFRP laser cutting, unveiling mechanisms of thermal ablation and mechanical denudation. 📈 Developed RIPL scanning, improving cutting efficiency by up to 33.9%. 🚀 Applications in aerospace and high-performance manufacturing.

 

✍️Publications Top Note :

Alpinetin ameliorates bleomycin-induced pulmonary fibrosisBiomedicine and Pharmacotherapy (2024): 2 citations.

🫁 Associations of prior pulmonary tuberculosis with incident COPDTherapeutic Advances in Respiratory Disease (2024): 0 citations.

🌍 The incidence of tuberculous pleurisy in mainland ChinaFrontiers in Public Health (2023): 4 citations.

📊 Global trends of NAFLD in 204 countriesJMIR Public Health and Surveillance (2022): 22 citations.

🏥 12-month systemic consequences of COVID-19 in discharged patientsClinical Infectious Diseases (2022): 47 citations.

🏥 Global burden of infective endocarditis (1990–2019)Frontiers in Medicine (2022): 69 citations.

🔬 Global burden of urinary tract infections (1990–2019)World Journal of Urology (2022): 73 citations.

🌍 Global trends of maternal infections (1990–2019)BMC Infectious Diseases (2021): 20 citations.

🧮 CAPRL Scoring System for COVID-19 mortality predictionInfectious Diseases and Immunity (2021): 0 citations.

🧪 Immunological characteristics in Type 2 diabetes among COVID-19 patientsFrontiers in Endocrinology (2021): 30 citations.

Conclusion

Long Chen demonstrates an exceptional track record in innovative research, industrial applications, and scholarly contributions to the field of CFRP laser processing. His unique ability to translate research into practical solutions for high-performance manufacturing makes him a strong contender for the Best Researcher Award. Addressing the areas for improvement, particularly in global collaborations and public outreach, could further solidify his candidacy as a leader in advanced manufacturing research.

Albandari Alrowaily | Material Science | Best Researcher Award

Assist. Prof. Dr Albandari Alrowaily | Infectious diseases | Best Researcher Award

Assist Prof at  Princess Nourah bint Abdulrahmman University, Saudi Arabia

🎓 Assist. Prof. Dr Albandari Alrowaily is an Assistant Professor of Physics at Princess Nourah Bint Abdurrahman University, Saudi Arabia. She specializes in theoretical nuclear and atomic physics with a Ph.D. from the University of North Texas. Starting her career as a high school physics teacher, she progressed through roles such as lecturer, committee member, and advisor. Passionate about education quality, she now serves as the Teaching and Learning Quality Manager. Assist. Prof. Dr Albandari Alrowaily is an advocate for empowering women in science, holding memberships in ISMWS and APS. Her contributions to academia include teaching a wide range of physics courses, mentoring students, and participating in critical departmental activities. Outside work, she actively supports cultural and environmental initiatives.

Professional Profiles:

Education 🎓

Ph.D. in Theoretical Nuclear and Atomic Physics (2021): University of North Texas, Denton, TX, USA. Master’s in Theoretical Nuclear Physics (2008): Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia. Bachelor’s in Physics (1999): Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia. Additional Certificates: Management, document organization, research ethics, teamwork, professional basics, and ESL.

Experience 👩‍🏫

High School Physics Teacher (1999–2000): Al-Jouf City. Teaching Assistant (2001–2007): Princess Nourah University. Committee Member: Grades Monitoring & Interviews (2001–2007). Lecturer (2008–2021): Princess Nourah University. Assistant Professor (2021–Present): Physics Department. Quality Manager (2022–Present): Teaching & Learning, College of Science. Additional Roles: Academic advisor, training supervisor, committee leader, and lab organizer.

Awards and Honors🏅

Ideal Student Awards (1992 & 1995): Al-Jouf Region. Distinguished Student (2000): Princess Nourah University. Travel Awards (2018–2019): DAMOP, UNT, and COS for research presentations. Recognized for exceptional contributions to academic excellence and community engagement.

Research Focus 🔬

Theoretical studies on nuclear and atomic physics, focusing on quantum mechanics, particle interactions, and advanced simulations. Proficient in computational methods using Matlab, Python, and Mathematica for modeling complex systems.  Research on nuclear reactions, atomic energy levels, and spectroscopic analysis. Advocates for interdisciplinary applications of physics to solve global challenges.

✍️Publications Top Note :

High-Performance Supercapacitors (ZnSe/MnSe)

Study: Development of ZnSe/MnSe composites for supercapacitor electrodes using hydrothermal techniques.

Publication: Journal of Physics and Chemistry of Solids, 2024, 49 citations.

Impact: Enhanced capacitive performance through novel material synthesis.

2. g-C3N4/NiIn2S4 for Supercapacitors

Study: Hydrothermal fabrication of g-C3N4/NiIn2S4 composite materials.

Publication: Ceramics International, 2024, 35 citations.

Impact: Promising electrode material with high efficiency.

3. Nonlinear Plasma Waves

Study: Interaction of solitons in pair-ion–electron plasmas using the Hirota method.

Publication: Physics of Fluids, 2023, 30 citations.

Impact: Advances theoretical understanding of electrostatic plasma dynamics.

4. SrCeO3/rGO for Oxygen Evolution Reaction

Study: Hydrothermal synthesis of SrCeO3 nanocomposites for electrocatalysis.

Publication: Fuel, 2024, 27 citations.

Impact: Enhanced catalytic efficiency for clean energy applications.

5. BiFeO3 Supercapacitor Applications

Study: Mn-doped BiFeO3 as an electrode material for supercapacitors.

Publication: Journal of Energy Storage, 2024, 20 citations.

Impact: Novel application of perovskite materials for energy storage.

6. Radiation Shielding Polymers

Study: Optical and mechanical improvements in polyvinyl alcohol composites.

Publication: Journal of Rare Earths, 2023, 18 citations.

Impact: Optimized materials for gamma-ray attenuation.

7. NiS2@SnS2 Nanohybrids

Study: Water-splitting applications of NiS2@SnS2 nanohybrids.

Publication: Materials Chemistry and Physics, 2024, 15 citations.

Impact: Low-cost, efficient electrocatalysts for sustainable energy.

8. Ce-doped SnFe2O4 Supercapacitors

Study: Hydrothermal synthesis enhancing electrochemical performance.

Publication: Electrochimica Acta, 2024, 13 citations.

Impact: Improved energy storage capabilities of supercapacitors.

Conclusion

The candidate has a robust academic background, extensive teaching experience, and proven leadership capabilities, making them a strong contender for the Research for Best Researcher Award. Strengthening the portfolio with focused research publications and demonstrating broader impacts of their work will further enhance their prospects for this prestigious recognition.

Jae-Do Nam | Functional polymer composites | Best Researcher Award

Prof. Dr. Jae-Do Nam | Functional polymer composites | Best Researcher Award

Professor at  Sungkyunkwan University, South Korea

Jae-Do Nam is a Professor at the School of Chemical Engineering and Department of Polymer Science and Engineering at Sungkyunkwan University, Korea. He is also an adjunct Professor in the Department of Energy. Dr. Nam has contributed extensively to polymer science and engineering, focusing on sustainable and eco-friendly technologies. With over 260 peer-reviewed journal papers and 60 patents, he is a leading figure in his field. He collaborates with global corporations like Hyundai Motors, Samsung, and LG Chemicals.

Publication Profile

scholar

Education🎓📖

Dr. Nam earned a B.S. and M.S. in Chemical Engineering from Seoul National University in 1984 and 1986, respectively, and his Ph.D. in Chemical Engineering from the University of Washington in 1991.

Experience🏫🔬

Dr. Nam has served as a research associate faculty at the Polymeric Composites Laboratory at the University of Washington (1991-1993), and he joined Sungkyunkwan University in 1994. He held leadership roles as a department chairman and visiting professor at institutions including EPFL and the University of Washington.

Awards & Honors 🏆🌟

Dr. Nam has received numerous accolades, including leadership roles in key conferences, directorships in major research centers, and a prominent membership in the Korean Rheology Society. He has also been a member of advisory boards for various international scientific bodies.

Research Focus⚙️🔬

Dr. Nam’s research interests include polymer nanocomposites, electroactive actuators, biodegradable materials, and advanced fabrication methods for various applications in automotive and electronics industries. He is dedicated to eco-friendly and sustainable technological innovations.

Publication  Top Notes

 

Electrospun Dual-Porosity Structure and Biodegradation Morphology of Montmorillonite Reinforced PLLA Nanocomposite Scaffolds
YH Lee, JH Lee, IG An, C Kim, DS Lee, YK Lee, JD Nam – Biomaterials 26 (16), 3165-3172 (2005)
Citation: 391

Development of Soft-Actuator-Based Wearable Tactile Display
IM Koo, K Jung, JC Koo, JD Nam, YK Lee, HR Choi – IEEE Transactions on Robotics 24 (3), 549-558 (2008)
Citation: 355

Thermal and Mechanical Characteristics of Poly (L-lactic Acid) Nanocomposite Scaffold
JH Lee, TG Park, HS Park, DS Lee, YK Lee, SC Yoon, JD Nam – Biomaterials 24 (16), 2773-2778 (2003)
Citation: 340

Graphene/Cellulose Nanocomposite Paper with High Electrical and Mechanical Performances
ND Luong, N Pahimanolis, U Hippi, JT Korhonen, J Ruokolainen, … – Journal of Materials Chemistry 21 (36), 13991-13998 (2011)
Citation: 288

Hygroscopic Aspects of Epoxy/Carbon Fiber Composite Laminates in Aircraft Environments
HS Choi, KJ Ahn, JD Nam, HJ Chun – Composites Part A: Applied Science and Manufacturing 32 (5), 709-720 (2001)
Citation: 270

Enhanced Mechanical and Electrical Properties of Polyimide Film by Graphene Sheets via In Situ Polymerization
ND Luong, U Hippi, JT Korhonen, AJ Soininen, J Ruokolainen, … – Polymer 52 (23), 5237-5242 (2011)
Citation: 254

High Thermal Conductivity Epoxy Composites with Bimodal Distribution of Aluminum Nitride and Boron Nitride Fillers
JP Hong, SW Yoon, T Hwang, JS Oh, SC Hong, Y Lee, JD Nam – Thermochimica Acta 537, 70-75 (2012)
Citation: 243

Effect of PEG-PLLA Diblock Copolymer on Macroporous PLLA Scaffolds by Thermally Induced Phase Separation
H Do Kim, EH Bae, IC Kwon, RR Pal, J Do Nam, DS Lee – Biomaterials 25 (12), 2319-2329 (2004)
Citation: 196

Investigations on Actuation Characteristics of IPMC Artificial Muscle Actuator
K Jung, J Nam, H Choi – Sensors and Actuators A: Physical 107 (2), 183-192 (2003)
Citation: 180

Graphene Oxide Porous Paper from Amine-Functionalized Poly (Glycidyl Methacrylate)/Graphene Oxide Core-Shell Microspheres
J Oh, JH Lee, JC Koo, HR Choi, Y Lee, T Kim, ND Luong, JD Nam – Journal of Materials Chemistry 20 (41), 9200-9204 (2010)
Citation: 176

 

Conclusion

Dr. Jae-Do Nam stands out as a pioneer in polymer science and is an ideal candidate for the Best Researcher Award. His vast body of work, extensive publication record, leadership in high-impact research centers, and active participation in advancing polymer science on a global scale make him a standout figure in the field. His ability to bridge the gap between academia and industry, particularly in the areas of sustainability and advanced polymer applications, ensures that his research will continue to have a lasting impact. With his established record of success, Dr. Nam embodies the qualities of a transformative researcher deserving of this prestigious recognition.

Aziza Kuldasheva | material science | Women Researcher Award

Ms. Aziza Kuldasheva | material science | Women Researcher Award

PhD at Wuhan University of technology, China

Aziza Kuldasheva is a dedicated civil engineering researcher and educator with extensive international experience. Holding a PhD position at Wuhan University of Technology in China, she has been deeply involved in advancing building materials and structural engineering. With fluency in multiple languages, including English and Russian, she effectively collaborates across diverse cultural and academic backgrounds. Aziza’s commitment to education is demonstrated through her roles as a lecturer and senior research worker at various prestigious institutions. Her passion for sustainable construction practices and innovative engineering solutions positions her as a key contributor to the field.

Publication Profile

orcid

Education 📚🎓

Aziza Kuldasheva earned her Bachelor’s degree with a GPA of 3.5 and a Master’s degree with a GPA of 3.9 from Samarkand State Architectural and Civil Engineering University in Uzbekistan. She further enhanced her expertise through a scientific internship at Harbin Engineering University in China and completed another Master’s degree at Riga Technical University in Latvia, achieving a GPA of 3.9. Currently, she is pursuing her PhD at Wuhan University of Technology, where she maintains a GPA of 3.54. Her academic journey reflects her strong foundation in civil engineering, supplemented by diverse international experiences that enrich her research and teaching methodologies.

Experience 🏗️🔧🌏

Aziza has a wealth of experience in civil engineering, beginning her career at Samarkand State Architectural and Civil Engineering University, where she served as an Assistant Lecturer, Lecturer, and Senior Research Worker in the Science-Research Laboratory of Building Materials. Between 2010 and 2018, she made significant contributions to various research projects, demonstrating leadership in her field. Aziza also worked as a Senior Research Worker at a similar laboratory in Riga, Latvia, gaining valuable insights into European engineering practices. Notably, she was an expert for the Ministry of Innovative Development of the Republic of Uzbekistan and participated in high-impact projects such as the nonlinear statistical model updating of prestressed concrete beams and bridge health monitoring assessments in Hubei, China. Her multifaceted roles reflect her commitment to advancing knowledge and technology in civil engineering.

Awards and Honors 🏆🎖️🌟

Aziza Kuldasheva has received numerous certificates and accolades throughout her academic and professional journey. She was honored with a certificate for her contributions to the BAU 2023 Exhibition of Building Materials in Germany, recognizing her commitment to innovation in the field. Additionally, she holds various training certificates, including those in quality laboratory testing, concrete technology, and inclusive growth for developing countries, showcasing her dedication to continuous professional development. Her expertise in building materials and color technologies has been validated through certifications from prestigious organizations, enhancing her credibility as a researcher and educator. These achievements underscore her impact on civil engineering and her commitment to improving construction practices, making her a respected figure in her field.

Research Focus 🔬🏗️

Aziza Kuldasheva’s research focuses on enhancing the safety and reliability of civil engineering structures, particularly through advanced modeling and analysis of building materials. Her recent projects include nonlinear statistical model updating and safety evaluations of long-span prestressed concrete beams, emphasizing her innovative approaches to structural engineering challenges. Aziza is particularly interested in the intersection of technology and sustainability in construction practices, aiming to develop effective solutions that address both functional and environmental concerns. Her participation in bridge health monitoring projects illustrates her commitment to real-world applications of her research. As a member of the Building Technology Center at Wuhan University of Technology, she collaborates with industry leaders to bridge the gap between academic research and practical engineering solutions. Aziza’s work not only contributes to academic knowledge but also seeks to enhance the resilience and sustainability of civil engineering practices globally.

Publication  Top Notes

Title: Single-cell transcriptional uncertainty landscape of cell differentiation

Authors: Nan Papili Gao, Olivier Gandrillon, András Páldi, Ulysse Herbach, Rudiyanto Gunawan, et al.

Publication Date: July 20, 2023

Journal: F1000Research

DOI: 10.12688/f1000research.131861.2

ISSN: 2046-1402

Conclusion

Aziza Kuldasheva is a strong candidate for the Women Researcher Award due to her academic achievements, diverse experience, and significant contributions to civil engineering research. By addressing areas for improvement, such as enhancing her publication record and increasing her engagement with the research community, she can further strengthen her position as a leading researcher in her field. Supporting her nomination for this award would not only recognize her efforts but also encourage her continued growth and contributions to engineering and technology, particularly in the context of women’s representation in research.

JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Mr. JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Assist Prof Dr at National Korea Maritime and Ocean University, South Korea

Mr. JAEHYUK CHOI is a distinguished professor at Korea Maritime and Ocean University with expertise in mechanical and marine engineering. After earning his Ph.D. from Hokkaido University, Japan, he has contributed significantly to fields like combustion engineering, high-temperature hydrogen production, and space utilization engineering. His professional journey includes a blend of academia, research, and industry advisory roles, including postdoctoral work at the Korea Atomic Energy Research Institute and advisory roles for Korea’s Ministry of Ocean and Fisheries. He has published extensively on air pollution control and hydrogen production modeling, contributing to global research initiatives.

Publication Profile

scopus

Education 🎓

Ph.D. in Mechanical Science (2005) – Hokkaido University, Japan (Advisor: Prof. Osamu Fujita) M.S. in Marine Engineering (2000) – Korea Maritime University, Korea (Advisor: Prof. Seok-Hun Yoon) B.S. in Marine Engineering (1996) – Korea Maritime University, Korea His educational journey has provided him with a robust foundation in mechanical and marine engineering, focused on areas such as combustion, fluid flow, and hydrogen production. The combination of Japanese and Korean maritime expertise enables him to develop cutting-edge models for air pollution control, combustion technologies, and high-temperature electrolysis, contributing to cleaner maritime operations. 🌐🌬️🚢

Experience 👨‍✈️

Naval Officer – 1996-1998 (Navy R.O.T.C 41, Korea) Researcher – 2000-2001 (Korea Maritime University) Research Student – 2001 (Hokkaido University, Japan Postdoctoral Researcher – 2005-2007 (Korea Atomic Energy Research Institute)  BK21 Assistant Professor – 2007-2009 (Seoul National University)  Assistant/Associate/Professor – 2009-present (Korea Maritime and Ocean University) Policy Advisory Council – 2017-2019 (Ministry of Ocean and Fisheries)  Visiting Scholar – 2019-2021 (University of Missouri) Mr. JAEHYUK CHOI has a rich professional background combining military service, academic research, and advisory roles. His international experience includes collaborations in Japan and the United States, broadening his expertise in nuclear hydrogen and marine engineering. 🛠️🌍

Awards and Honors🏆

Minister Citation – Ministry of Ocean and Fisheries (2018) Best Teacher Award – Korea Maritime and Ocean University (2014, 2017) 2000 Outstanding Intellectuals – IBC (2016) Minister Citation – Ministry of Science, ICT, and Future Planning (2015) Certificate – President of KMOU (2013, 2014) Outstanding Paper – Japan Society of Mechanical Engineers (2007 Outstanding Paper – Korean Society of Marine Engineering (2006 Certificate – Korea Atomic Energy Research Institute (2006) Mr. JAEHYUK CHOI has received numerous awards, recognizing his contributions to marine engineering and academia. His dedication to research and teaching is reflected in prestigious ministerial citations and multiple best paper awards from renowned engineering societies. 🏅📚🎖️

Publication  Top Notes

Experimental and numerical studies on performance investigation of a diesel engine converted to run on LPG
Authors: Kuk Kim, J., Lee, W.-J., Ahn, E., Choi, J.-H.
Published in: Energy Conversion and Management, 2024, 321, 119091
Summary: This paper investigates the performance of diesel engines converted to operate on LPG (liquefied petroleum gas). The study combines both experimental and numerical methods to analyze fuel efficiency, emissions, and engine performance.

Review of noise and vibration reduction technologies in marine machinery: Operational insights and engineering experience
Authors: Park, M.-H., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Applied Ocean Research, 2024, 152, 104195
Summary: This review focuses on technologies aimed at reducing noise and vibration in marine machinery. The authors compile operational insights and lessons learned from engineering practices, emphasizing the importance of reducing environmental and human impacts in maritime applications.

Experimental evaluation of the significance of scheduled turbocharger reconditioning on marine diesel engine efficiency and exhaust gas emissions
Authors: Nyongesa, A.J., Park, M.-H., Lee, C.-M., Hur, J.-J., Lee, W.-J.
Published in: Ain Shams Engineering Journal, 2024, 15(8), 102845
Summary: This article presents an experimental study evaluating the impact of scheduled turbocharger reconditioning on the efficiency of marine diesel engines and associated exhaust gas emissions. The findings emphasize the importance of maintenance schedules for optimizing engine performance and reducing emissions.

Effects of natural gas admission location and timing on performance and emissions characteristics of LPDF two-stroke engine at low load
Authors: Nyongesa, A.J., Choi, J.-H., Lee, J.-W., Kim, J.-S., Lee, W.-J.
Published in: Case Studies in Thermal Engineering, 2024, 56, 104241
Summary: This paper investigates the effects of natural gas admission timing and location on the performance and emissions of low-pressure dual-fuel (LPDF) two-stroke engines. The results are crucial for optimizing engine operations under low-load conditions.

Estimation of greenhouse gas emissions from ships registered in South Korea based on activity data using the bottom-up approach
Authors: Yeo, S., Kuk Kim, J., Choi, J.-H., Lee, W.-J.
Published in: Journal of Engineering for the Maritime Environment, 2024
Summary: This study uses a bottom-up approach to estimate greenhouse gas emissions from ships registered in South Korea. The authors focus on activity data, providing a detailed methodology for assessing emissions from maritime transportation.

LPG, Gasoline, and Diesel Engines for Small Marine Vessels: A Comparative Analysis of Eco-Friendliness and Economic Feasibility
Authors: Kim, J.K., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Energies, 2024, 17(2), 450
Summary: This article compares LPG, gasoline, and diesel engines for small marine vessels, focusing on their eco-friendliness and economic feasibility. The paper highlights LPG as a potential environmentally friendly alternative to traditional fuels.

Impact of K-H Instability on NO Emissions in N₂O Thermal Decomposition Using Premixed CH₄ Co-Flow Flames and Electric Furnace
Authors: Park, J., Kim, S., Yu, S., Choi, J.-H., Yoon, S.H.
Published in: Energies, 2024, 17(1), 96
Summary: This study examines the impact of Kelvin-Helmholtz (K-H) instability on nitrogen oxide (NO) emissions during nitrous oxide (N₂O) thermal decomposition in premixed methane co-flow flames. The findings contribute to understanding combustion instability’s role in emission characteristics.

Feasibility study on bio-heavy fuel as an alternative for marine fuel
Authors: Kim, J.-S., Choi, J.-H.
Published in: Renewable Energy, 2023, 219, 119543
Summary: This feasibility study explores the potential of bio-heavy fuel as a sustainable alternative to conventional marine fuels. The paper assesses the environmental and economic impacts of using bio-heavy fuel in maritime applications.

Corrigendum: Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9
Summary: The corrigendum addresses errors in a previously published article related to hydrogen mixture ratios and scavenging air temperature’s effects on two-stroke marine engine performance and emissions.

Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9, pp. 195–216

Conclusion

The candidate is highly suitable for the Best Researcher Award due to their comprehensive expertise, significant professional experience, and numerous accolades. Their research has substantial implications for environmental sustainability and technological advancement. By focusing on improving their publication output and fostering industry collaborations, the candidate can further solidify their impact and leadership in their field. Overall, the candidate’s strengths make them an exemplary choice for this prestigious award.

Jen-Taut Yeh | communication substrate materials | Best Researcher Award

Prof.  MatSE Department/Hubei University, china

Prof. Jen-taut Yeh has established himself as a leading figure in the field of materials science and engineering, particularly in the areas of functional polymers, nanocomposite materials, and high-performance textiles. His academic journey, spanning several decades, has been marked by significant contributions to research, innovation, and education, positioning him as an influential scientist and educator in the global materials science community. Currently serving as a chair professor in the Department of Materials Science and Engineering (MatSE) at Hubei University in Wuhan, China, Prof. Yeh continues to lead cutting-edge research and mentor the next generation of scientists.

Professional Profiles:

🌟 Prof. Jen-taut Yeh: A Distinguished Career in Materials Science

🎓 Academic Background

Prof. Jen-taut Yeh embarked on his illustrious academic journey with a Bachelor of Science (B.S.) in Chemical Engineering from National Taiwan University in 1981. His passion for polymers led him to pursue a Ph.D. in the polymer science program at the Department of Materials Science and Engineering (MatSE) at Penn State University, where he earned his degree in 1989. This solid foundation laid the groundwork for his future groundbreaking research in materials science.

🧪 Early Research Experience

After completing his Ph.D., Prof. Yeh spent six months as a Research Scientist at the MatSE Department of the University of Pennsylvania, working closely with Professor N. Brown. This period allowed him to further hone his research skills and gain valuable experience in the field of materials science, setting the stage for his future academic contributions.

👨‍🏫 Academic Career at NTUST

In 1990, Prof. Yeh returned to Taiwan and joined the faculty of the National Taiwan University of Science and Technology (NTUST) as an associate professor. His dedication to research and teaching earned him a promotion to full professor in the Department of Materials Science and Engineering in 1995. During his tenure at NTUST, Prof. Yeh made significant strides in the development of functional polymers and nanocomposite materials, contributing over 200 peer-reviewed publications to the scientific community.

🌍 Global Impact and Patents

Prof. Yeh’s research has had a profound impact on both academia and industry. As an inventor and co-inventor, he holds more than 35 patents, particularly in the areas of functional polymers, nanocomposite materials, and high-performance textiles. His innovations have led to advancements in various industries, including textiles, electronics, and biotechnology, making him a prominent figure in the field of materials science.

🏫 Leadership at Kun San and Hubei University

After retiring from NTUST in 2013, Prof. Yeh continued to contribute to academia as a chair professor in the MatSE Department at Kun San (Tainan, Taiwan) and later at Hubei University (Wuhan, China). In these roles, he has continued to lead research initiatives and mentor young scientists, ensuring the continued advancement of materials science.

📚 Legacy and Contributions

Prof. Yeh’s career is marked by a dedication to advancing knowledge in materials science. His contributions to functional polymers, nanocomposite materials, and high-performance textiles have left a lasting legacy in both research and practical applications. His work exemplifies the integration of scientific research with real-world innovation, making him a highly respected and influential figure in the global materials science community.

Strengths for the Award

  1. Extensive Research Contributions: Professor Yeh has authored over 200 peer-reviewed publications, showcasing a prolific and impactful research career in materials science and polymer engineering. His extensive body of work indicates a deep commitment to advancing knowledge in his field.
  2. Innovative Patents: With more than 35 patents related to functional polymers, nano-composite materials, and high-performance textiles, Professor Yeh has demonstrated significant innovation. These patents highlight his role in developing cutting-edge technologies that have practical applications in various industries.
  3. Diverse Expertise: His research spans functional polymers, nano-composites, and textiles, reflecting a broad and versatile expertise. This diverse focus is valuable for addressing complex problems in material science and engineering.
  4. International Experience: Having held prestigious positions at institutions in Taiwan and China, and experience as a Research Scientist at the University of Pennsylvania, Professor Yeh brings a global perspective and a wealth of international experience to his research.
  5. Long-Term Academic Influence: His academic career, including roles as an associate professor, professor, and chair professor, illustrates long-term influence and leadership in the field of materials science and engineering.

Areas for Improvement

  1. Recent Research Trends: While Professor Yeh has a strong historical track record, continuous adaptation to the latest research trends and emerging technologies is crucial. Keeping abreast of the latest developments in materials science and integrating them into his work could further enhance his contributions.
  2. Collaborative Research: Expanding collaborative efforts with researchers in emerging fields or interdisciplinary areas could lead to new innovations and applications. Collaborations with industry partners or researchers from other scientific disciplines might yield groundbreaking results.
  3. Research Impact Metrics: While the number of publications and patents is impressive, focusing on increasing the impact and citation of his work could strengthen his profile. Engaging more actively in high-impact journals or conferences might enhance his research visibility.

 

✍️Publications Top Note :

Poly(ether ketone ketone)/Silica Nanotubes Substrate Films:

Publication: Journal of Polymer Research, 2024, 31(2), 33.

Summary: This work explores the use of PEKK combined with silica nanotubes to create advanced substrate films suitable for 6G communication systems. The research highlights the material’s potential to enhance performance in high-frequency applications.

Poly(ether ketone ketone)/Hollow Silica Filler Substrates:

Publication: Polymer International, 2024.

Summary: Similar to the previous research, this study investigates PEKK substrates but with hollow silica fillers, focusing on improving material properties for 6G applications.

Fifth Generation (5G) Communication Materials

Poly(ether ketone ketone)/Modified Montmorillonite Substrate:

Publication: Macromolecular Research, 2022, 30(2), pp. 107–115.

Summary: This study focuses on substrates made from PEKK and modified montmorillonite for use in 5G communication technologies, examining how these materials can improve signal performance.

SiO2 Filled Functional Polypropylene Substrates:

Publication: Journal of Macromolecular Science, Part B: Physics, 2022, 61(6), pp. 696–718.

Summary: This research evaluates the performance of polypropylene substrates filled with SiO2 for 5G communication, focusing on functional properties that enhance communication efficiency.

Sustainable and Renewable Materials

ScCO2-Processed Thermoplastic Starch/Chitosan Oligosaccharide Blown Films:

Publication: Journal of Polymer Engineering, 2024.

Summary: This study investigates the use of supercritical CO2 (ScCO2) to process thermoplastic starch and chitosan oligosaccharides, producing blown films with oxygen barrier and antibacterial properties.

Fully Renewable Oxygen Barrier Films from ScCO2-Processed Thermoplastic Starch/Sugar Alcohol Blends:

Publication: Journal of Polymer Engineering, 2024.

Summary: The focus here is on creating oxygen barrier films from renewable resources, particularly thermoplastic starch and sugar alcohol blends, processed with ScCO2.

Renewable Thermoplastic Starch/Sugar Alcohol Blends:

Publication: Polymer Engineering and Science, 2024, 64(1), pp. 231–242.

Summary: This work continues the exploration of renewable thermoplastic starch blended with sugar alcohols, aiming to develop materials with practical applications in oxygen barrier technology.

Material Processing and Performance Enhancement

Effect of Supercritical CO2 and Alkali Treatment on Oxygen Barrier Properties:

Publication: Journal of Polymer Engineering, 2023, 43(10), pp. 833–844.

Summary: This article explores the impact of supercritical CO2 processing and alkali treatment on the oxygen barrier properties of thermoplastic starch/PVA films.

Micro Foaming of Glutaraldehyde/Hexametaphosphate/Thermoplastic Starch Foams:

Publication: Cellular Polymers, 2022, 41(3), pp. 119–143.

Summary: This research deals with the micro-foaming performance of thermoplastic starch foams modified with alkali treatment and montmorillonite nano-platelets, processed with ScCO2.

Advanced Fiber Materials

Multistage Drawing of ScCO2-Assisted UHMWPE/Activated Nanocarbon Fibers:

Publication: Journal of Polymer Research, 2022, 29(3), 78.

Conclusion

Professor Jen-Taut Yeh is a distinguished researcher with a substantial and impactful career in materials science. His extensive publication record, innovative patents, and diverse research interests are notable strengths. To further enhance his candidacy for the Best Researcher Award, focusing on current research trends, expanding collaborative efforts, and improving research impact metrics could be beneficial. His proven track record and ongoing contributions make him a strong contender for recognition in the field of materials science and engineering.

Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Institute of Chemical Technology Mumbai Marathwada campus Jalna , Gabon

Prof. Girish Mukundrao Joshi, a Full Professor of Engineering Physics and Materials at ICT Mumbai’s off-campus in Marathwada Jalna, boasts over 20 years of teaching experience. He has been a visiting scientist at UCLM, Spain, and has published 150 articles in prestigious international journals, holding two granted patents. An APA life member, fellow of the Maharashtra Academy of Sciences, and life fellow of the Indian Chemical Society, he received the National Best Teacher Award by Krishmurthy Trust in 2017. He has mentored seven doctorates, executed major research projects, and serves on various editorial and expert boards. Recently, he was appointed to CIPET’s Innovation Cell and DBATU’s Academic Council.

 

Professional Profiles:

Academic and Professional Background 🎓

Prof. Girish Mukundrao Joshi is currently a Full Professor in Engineering Physics and Materials at ICT Mumbai’s off-campus Marathwada Jalna, Maharashtra. With over 20 years of teaching experience, he has significantly contributed to the academic field. He has served as a visiting scientist at UCLM, Spain, in 2009 and 2016.

Publications and Patents 📚

Prof. Joshi has published 150 articles in reputed international journals and holds credit for two granted patents. His scholarly work is widely recognized, showcasing his expertise and dedication to research.

Memberships and Fellowships 🏅

APA Life Member (2024)Fellow of the Maharashtra Academy of Sciences (2019)Life Fellow of the Indian Chemical Society (2021)

Awards and Recognition 🏆

He was honored with the National Best Teacher Award by Krishmurthy Trust, Tirupati, in 2017. Recently, he received the Best Professor Award from Modern Plastic India in 2024.

Teaching and Mentorship 👩‍🏫

Prof. Joshi is celebrated for his teaching tenure at VIT Vellore (2010-2018). He has guided seven doctorates and is currently mentoring four more. His dedication to student development is commendable.

Research Projects 🔬

He has led four significant research projects as the chief investigator for organizations such as the Naval Research Board (NRB), DRDO, Dover India Industry, and Savitra Printer Nashik, under CSR-UGC-DAE.

Editorial and Advisory Roles 📖

Prof. Joshi serves on the editorial board of Modern Plastic India Magazine and is an expert board member for the Journal of Physicascripta – IOP. He is also a Board of Studies (BOS) member for SRTMU, Nanded, and ICT Mumbai.

✍️Publications Top Note :

Enhanced Physio‐Chemical Properties of PMMA/PS Polymer Blends by DC Glow Discharge Plasma Treated K2TI6O13 for Electronic Applications

Journal: ChemistrySelect

Date: 2024-07-18

DOI: 10.1002/slct.202401048

Contributors: Shankar S. Humbe, Girish M. Joshi, R. R. Deshmukh

2. Hydrophobic Polymer Nano Hybrid Ternary Composite Electrode for Nanomolar Tracing of Cd2+ Ions

Journal: Journal of Applied Polymer Science

Date: 2024-04-20

DOI: 10.1002/app.55249

Contributors: Savita S. Mane, Girish M. Joshi

3. Influence of Hybrid Filler on Charge Conduction and Storage Performance of Polyvinyl Chloride/Nitrocellulose Blend for Hybrid Electrolyte Application

Journal: ChemistrySelect

Date: 2024-03-18

DOI: 10.1002/slct.202304421

Contributors: Pratibha S. Jadhav, Girish M. Joshi

4. Nanostructural Characterization of Luminescent Polyvinyl Alcohol / Graphene Quantum Dots Nanocomposite Films

Date: 2023-11

DOI: 10.20944/preprints202311.0500.v1

Contributors: Elumalai D, Rodríguez B, Kovtun G, Hidalgo P, Méndez B, Kalleemula S, Joshi GM, Cuberes MT

5. Recent Scenario of Surfactants Modified Graphene and Its Derivatives‐Based Polymer Nanocomposites—Review

Journal: Macromolecular Chemistry and Physics

Date: 2023-11

DOI: 10.1002/macp.202300122

Contributors: Shreya P. Yeole, Pratibha S. Jadhav, Girish M. Joshi

Mr. Vishrut Deshpande | Composite Materials Award | Best Researcher Award

Mr. Vishrut Deshpande | Composite Materials Award | Best Researcher Award

Mr. Vishrut Deshpande, Virginia Polytechnic Institute and State University, United States

Mr. Vishrut Deshpande is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

Professional Profiles:

Google scholar

Scopus

Orcid

EDUCATION🎓

Virginia Tech, Blacksburg, VADoctor of Philosophy, Mechanical Engineering2022 – Current(Expected graduation: Summer 2024) Overall GPA: 3.8🎓 Clemson University, Clemson, SCMaster of Science (en route PhD), Mechanical Engineering2018 – 2022Overall GPA: 3.7

WORK EXPERIENCE🔬

Research Assistant – Clemson University, Virginia Tech

May 2019 – PresentSwitchable, deployable, and lockable structures inspired from OrigamiEnergy-efficient transforming, compact packing, & variable stiffness Origami-inspired structures.Deploying structure with minimal-control strategy & variable load-bearing capacities.Introducing multistability through geometric frustration in origami-inspired closed cylindrical structures.Buckling-induced Dual-stiffness Sandwich Cores using Asymmetric CFRP laminatesAchieved large high/low stiffness switching (≈ 100 folds) through in-plane compression of laminates.Developed a unique fabrication tool for laminates with a flexible connection to allow bistable switching.

🏅 Virginia Tech ME Dept Website Highlight:

Vishrut Deshpande’s significant contribution to securing NSF funding for Origami-inspired Robotic Structures was highlighted on the Virginia Tech Mechanical Engineering Department’s website. This recognition underscores his impact in advancing innovative research within the field.

🤖 National-level Robotics Competition:

Vishrut actively participated in national-level robotics competitions in both 2015 and 2016, showcasing his dedication and proficiency in robotics engineering.

🏆 Finalist for Best Student Paper Award – SPIE 2022:

Vishrut Deshpande’s paper was recognized as a finalist in the competition for the Best Student Paper award at the SPIE 2022 conference. This acknowledgment highlights the quality and impact of his research contributions in the field of mechanical engineering.

👨‍🔬 Professional Memberships:

Vishrut is an active member of professional organizations including ASME, SPIE, and CompositesWorld, demonstrating his engagement with the broader engineering community and his commitment to staying updated with the latest advancements in his field.

🎶 Certified Classical Percussionist:

Alongside his academic pursuits, Vishrut is a certified classical percussionist, specializing in the Tabla. His achievement of clearing level 5 signifies his dedication to musical excellence and his ability to excel in diverse domains.

📊 Citation Metrics (Google Scholar):

Total Citations since 2019: 94

h-index since 2019: 4

i10-index since 2019: 3

📖 Publications  Top Note :

Snap-through and stiffness adaptation of a multi-stable Kirigami composite module

Authors: A Lele, V Deshpande, O Myers, S Li

Journal: Composites Science and Technology

Volume: 182

Pages: 107750

Year: 2019

Citations: 36

Engineering by cuts: How Kirigami principle enables unique mechanical properties and functionalities

Authors: J Tao, H Khosravi, V Deshpande, S Li

Journal: Advanced Science

Volume: 10 (1)

Pages: 2204733

Year: 2023

Citations: 32

Transient deformation and curvature evolution during the snap-through of a bistable laminate under asymmetric point load

Authors: V Deshpande, O Myers, G Fadel, S Li

Journal: Composites Science and Technology

Volume: 211

Pages: 108871

Year: 2021

Citations: 15

Transient snap-through of a bistable composite laminate under asymmetric point load

Authors: V Deshpande, O Myers, G Fadel, S Li

Conference: Active and Passive Smart Structures and Integrated Systems XIV

Pages: 470-477

Year: 2020

Citations: 5

High-fidelity analytical modeling of asymmetric CFRP composites using Reissner–Mindlin theory and hygroscopic degradation

Authors: V Deshpande, SA Chowdhury, O Myers, S Li

Journal: Composites Science and Technology

Volume: 236

Pages: 109983

Year: 2023

Citations: 4

Switchable structures using asymmetric fiber composite laminates: two case studies

Authors: V Deshpande, O Myers, S Li

Conference: Active and Passive Smart Structures and Integrated Systems XVI

Pages: 144-152

Year: 2022

Citations: 1

Examining the Different Snap-through Characteristics of Bistable CFRP composite laminates

Author: V Deshpande

Year: 2022

Citations: 1

Large-ratio stiffness switching via harnessing the in-plane buckling and bi-stability of high-load capacity composite laminates

Authors: V Deshpande, O Myers, S Li

Journal: Composites Part B: Engineering

Manuscript ID: 111440

Year: 2024

A New Analytical Approach for Bistable Composites

Authors: V Deshpande, O Myers, G Fadel, S Li

Conference: Smart Materials, Adaptive Structures and Intelligent Systems

Manuscript ID: 85499

Year: 2021

Omer SaidToker | Mechanics of Functional Materials and Structures | Best Researcher Award

Assoc Prof Dr Omer  SaidToker; Leading Researcher in Mechanics of Functional Materials and Structures

Associate Professor Dr. Omer Said Toker is a highly respected faculty member at Yildiz Technical University. With a strong background in his field and a dedication to academic excellence, Dr. Toker has made significant contributions to the university’s academic and research endeavors. His expertise lies in [insert specific field or specialization], where he has demonstrated exceptional knowledge and skill. Dr. Toker is known for his passion for teaching and his ability to inspire and mentor students. His research interests and contributions have earned him recognition in the academic community, making him a valuable asset to Yildiz Technical University.

Professional Profiles:

Education:

Dr. Omer Said Toker is an Associate Professor at Yildiz Technical University, known for his expertise in [insert specific field or specialization]. He has made significant contributions to the university’s academic and research endeavors, earning recognition in the academic community. Dr. Toker is dedicated to fostering a stimulating learning environment and is passionate about mentoring students. His academic journey includes a Doctorate from Namık Kemal Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Turkey, from 2012 to 2016, a Postgraduate degree from Erciyes University, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Turkey, from 2009 to 2012, and an Undergraduate degree from Middle East Technical University, Faculty of Engineering, Department of Food Engineering, Turkey, from 2003 to 2008.

Courses and Trainings:

  Education Management and Planning ,ReolojiEğitimi, AntonPaar, 2014

Research Interest:

FoodEngineering, FoodTechnology, Sugars,Syrups, Starches andCandy, Cocoa and ChocolateProducts

Award and Honor:

KaradağA., MetinYıldırımR., TokerÖ.S., 2024-EşikÜstüÖdülü, Tübitak,May2019

Academic Titles / Tasks:

AssociateProfessor, YildizTechnicalUniversity, FacultyOfChemıcal And Metalurgıcal Engıneerıng, Department Of Food Engineering, 2020 -Continu
AssistantProfessor, YildizTechnicalUniversity, FacultyOfChemıcal And Metalurgıcal Engıneerıng, Department Of Food Engineering, 2018 -Continues
AssistantProfessor, YildizTechnicalUniversity, FacultyOfChemıcal And Metalurgıcal Engıneerıng, Department Of Food Engineering,2017 -2018
ResearchAssistant, YildizTechnicalUniversity,  FacultyOfChemıcal And Metalurgıcal Engıneerıng,Department Of Food Engineering,2013 -2017
ResearchAssistant,  IgdirUniversity, MühendsilikFakültesi, GıdaMühendisliği, 2012 -2013
ResearchAssistant, ErciyesUniversity, MühendsilikFakültesi, GıdaMühendisliği, 2010 -2012
ResearchAssistant, IgdirUniversity, MühendsilikFakültesi, GıdaMühendisliği, 2009 -2010

Publications Top Notes:

I. Modification of chia (Salvia hispanica L.) seedmucilage (a heteropolysaccharide) by atmospheric pressure cold plasma jet treatment Mutlu S.,PalabiyikI.,KopukB.,GunesR.,BolukE.,BAĞCIU.,ÖZMEND.,TOKERÖ.S.,KONARN. FoodBioscience,vol.56,2023 (SCI-Expanded) I . Production and characterization of probiotic jel y candy containing Bacil us species KahramanB.,KorkmazK.,DaştanD.,TokerÖ.S.,DertliE.,ArıcıM. Journalof FoodMeasurementandCharacterization,vol.17,no.6,pp.5864-5873,2023 (SCI-Expanded)
I I. Importance of rheological properties in enrobing efficiency of dark chocolate: application in wafer products ErturalG. I.,GunesR.,TOKERÖ.S.,PalabiyikI.,KONARN.,SAĞDIÇO. International Journalof Food Science andTechnology,vol.58,no.11,pp.5938-5946,2023 (SCI-Expanded)
IV. Gelatin production fromturkey (Meleagris gal opavo) skin as a newsource: fromwaste to a sustainable food gel ing agent OzcanY.,KurtA.,ÖZMEND.,TOKERÖ.S. Journalof the Science of Food andAgriculture,vol.103,no.11,pp.5511-5520,2023 (SCI-Expanded)
V. Investigation of cold plasma technique as an alternative to conventional alkalization of cocoa powders PalabiyikI.,KopukB.,TokerÖ.S.,KonarN. INNOVATIVEFOODSCIENCEANDEMERGINGTECHNOLOGIES,vol.88,no.1,pp.103440,2023 (SCI-Expanded)