Dr. Haichen Zhou | Artificial Intelligence | Best Researcher Award
Senior Engineer | Automation Research and Design Institute of Metallurgical Industry | China
Dr. Haichen Zhou is a distinguished metallurgical researcher and Senior Quality Engineer at the Automation Research and Design Institute of Metallurgical Industry Co., Ltd., under the China Iron & Steel Research Institute Group Co., Ltd. He received his Ph.D. from the University of Science and Technology Beijing (USTB), a leading institution renowned for metallurgy and materials science. Over the course of his career, Dr. Zhou has established himself as an expert in steelmaking and metallurgical process optimization, with a strong focus on inclusions control in liquid steel and slab quality improvement. His professional expertise spans physical simulation, numerical modeling, and the integration of artificial intelligence into metallurgical research and industrial practice. Dr. Zhou has authored 14 papers published in highly regarded journals such as Metallurgical and Materials Transactions B (MMTB), ISIJ International, Steel Research International, Ironmaking and Steelmaking, and Metallurgical Research & Technology (MRT). His research contributions have not only advanced theoretical understanding but also delivered practical solutions to improve steel quality and process reliability. Combining academic depth with industrial experience, he continues to play a key role in bridging science, engineering, and innovation in modern steel manufacturing.
Professional Profile
Education
Dr. Haichen Zhou earned his doctoral degree in metallurgical engineering from the University of Science and Technology Beijing (USTB), a globally recognized institution for research in materials science, metallurgy, and engineering. During his Ph.D. studies, he specialized in steelmaking processes with a particular focus on inclusions control technology, steel slab quality assessment, and advanced metallurgical process simulations. His academic training combined theoretical knowledge with experimental and computational methods, allowing him to address both fundamental and applied aspects of metallurgical phenomena. At USTB, Dr. Zhou carried out extensive research on the thermodynamics and kinetics of inclusions formation, the influence of microstructural defects on steel properties, and the use of physical simulation for understanding process behavior. In addition, he explored the potential of numerical simulation and artificial intelligence to predict, optimize, and control complex metallurgical processes, thereby merging traditional metallurgy with emerging computational approaches. His Ph.D. thesis provided valuable insights into steel quality improvement, combining laboratory-scale investigations with industrial applications. This solid academic foundation not only prepared him for his current research and engineering responsibilities but also positioned him as a specialist capable of leading interdisciplinary advancements in metallurgical science and steelmaking technology.
Experience
Dr. Haichen Zhou has accumulated extensive professional experience as a metallurgical engineer and researcher. He currently serves as a Senior Quality Engineer at the Automation Research and Design Institute of Metallurgical Industry Co., Ltd., part of the China Iron & Steel Research Institute Group Co., Ltd. In this capacity, he is responsible for developing and implementing advanced technologies for steel quality improvement, defect prevention, and metallurgical process optimization. His work encompasses inclusions control in liquid steel, continuous casting process refinement, and slab defect mitigation, with the overarching goal of producing high-performance steels for industrial applications. Dr. Zhou’s expertise also extends to physical simulation, which he uses to replicate and study metallurgical phenomena under controlled conditions, as well as numerical simulation for predictive modeling of steelmaking processes. More recently, he has contributed to applying artificial intelligence in metallurgy, utilizing machine learning for process monitoring, quality prediction, and optimization. Prior to his current role, his academic research and collaborative projects provided him with strong exposure to both laboratory studies and industrial challenges. His career demonstrates a seamless integration of academic knowledge with industrial practice, ensuring impactful contributions to both scientific progress and steel industry advancements.
Awards and Honors
Throughout his career, Dr. Haichen Zhou has earned recognition for his research contributions, publications, and industrial innovations in metallurgical engineering. While completing his Ph.D. at the University of Science and Technology Beijing (USTB), he was commended for his doctoral research on steel quality improvement and inclusions control technology. His published works in high-impact journals, including Metallurgical and Materials Transactions B, ISIJ International, and Steel Research International, have attracted attention from the global metallurgy community, highlighting his role as a rising expert in his field. At the China Iron & Steel Research Institute Group, Dr. Zhou has been involved in major research and development projects, earning professional acknowledgment for his role in advancing inclusions control methods and integrating artificial intelligence into steel manufacturing practices. His ability to merge classical metallurgical knowledge with modern computational technologies positions him as an innovative thinker in steel engineering. Although specific awards are not listed, his 14 peer-reviewed publications, professional designations, and continued contributions to steel process optimization represent significant milestones of achievement. These accomplishments reflect both his scientific rigor and his dedication to advancing the steel industry’s pursuit of higher quality, efficiency, and sustainability.
Research Focus
Dr. Haichen Zhou’s research focuses on advancing steelmaking and metallurgical science through a combination of experimental, computational, and data-driven approaches. His primary expertise lies in inclusions control technology in liquid steel, which is crucial for improving the purity, mechanical properties, and performance of final steel products. He has extensively studied steel slab quality, analyzing the causes of defects during solidification and developing strategies to minimize flaws, thereby enhancing steel consistency and reliability. His research also integrates physical simulation techniques to reproduce metallurgical processes under controlled laboratory conditions, providing critical insights into inclusions behavior and slab defect evolution. Complementing these experimental approaches, Dr. Zhou applies numerical simulation to predict and optimize complex steelmaking phenomena, offering accurate process models for industrial use. In recent years, he has expanded his work to include artificial intelligence applications in steel manufacturing. By using machine learning and data analytics, he has developed predictive models for defect formation, real-time monitoring systems, and process optimization frameworks. His interdisciplinary approach, combining metallurgy with computational intelligence, contributes to both fundamental metallurgical knowledge and industrial innovation. Ultimately, his research seeks to enhance steel quality, improve production efficiency, and support the sustainable development of advanced steel technologies.
Publication Top Notes
Mathematical Simulation and Industrial Implications of Swirling Gas-Solid Distributor in the Bottom-Blowing O2–CaO Steelmaking Converter Process
Year: 2025
Development of Ca‐Containing Ferrosilicon Instead of Ca Treatment in High Silicon Steels during Ladle Refining
Year: 2025
Mathematical modeling of the effect of SEN outport shape on the bubble size distribution in a wide slab caster mold
Year: 2025
Optimization of Vortex Slag Entrainment during Ladle Teeming Process in the Continuous Casting of Automobile Outer Panel
Year: 2025
Overall, Dr. Haichen Zhou is a strong candidate for recognition as a Best Researcher, particularly in metallurgical process engineering and steel quality control. His track record of publications, technical expertise, and innovative integration of artificial intelligence into steelmaking research represent clear strengths. With further expansion of international visibility, leadership roles, and demonstration of broader impact, he has the potential to stand out as an exceptional awardee. At this stage, he is certainly a worthy nominee, and with continued contributions, he could establish himself as a leading figure in the global metallurgy research community.