Mr. Kabir Bashir SHARIFF | mécanique des fluides | Best Researcher Award

Mr. Kabir Bashir SHARIFF | mécanique des fluides | Best Researcher Award 

jeune chercheur, Laboratoire universitaire des sciences appliquées de Cherbourg, France

Kabir Bashir Shariff is a motivated professional with a Ph.D. in Fluid Mechanics, Energetics, Thermal & Acoustics. He is passionate about renewable energy and has experience in fluid and thermal analysis, analytical modeling, and data analysis.

Profile

scholar

🎓 Education

– Ph.D. in Fluid Mechanics, Energetics, Thermal & Acoustics, University of Caen Normandy (2020-2023) 📚– (link unavailable) in Fluid Mechanics and Energetics, Grenoble INP – ENSE3 (2019-2020) 🌟– (link unavailable) in Applied Mechanics, University Grenoble Alpes (2018-2019) 🔍

👨‍🔬 Experience

– Engineer, Capgemini (2022-present) 💻– Doctoral Researcher, LUSAC (2020-2023) 🔬– Teaching Assistant, ESIX Normandie (2022-2023) 📚– Intern, LEGI and 3SR (2020 and 2019) 🔍– Engineer, Colenco Consulting (2017-2018) 💼

🔍 Research Interest

Kabir Bashir Shariff’s research focuses on optimizing energy production in tidal turbine parks, analytical modeling, and CFD analysis.

📚 Publications

1. “An empirical model accounting for added turbulence in the wake of a full-scale turbine in realistic tidal stream conditions” 🌊
2. “Developing an empirical model for added turbulence in a wake of tidal turbine” 🔍
3. “A generalized empirical model for velocity deficit and turbulent intensity in tidal turbine wake accounting for the effect of rotor-diameter-to-depth ratio” 📊
4. “A comparative study of power production using a generic empirical model in a tidal farm” 💡
5. “An empirical wake model accounting for velocity deficit and turbulence intensity in a simple tidal park” 🌟
6. “Development of a generic analytical model for optimizing the energy production of a tidal turbine park” 📚
7. “Added turbulence empirical model for a single tidal turbine” 🔬
8. “Developing an empirical model for added turbulence” 📝

Conclusion

Based on the provided profile, Kabir Bashir Shariff appears to be a strong candidate for the Best Researcher Award, given his research productivity, teaching experience, and industry background. Addressing the areas for improvement could further strengthen his candidacy.

Yao Lei | Aerodynamics | Best Researcher Award

Dr. Yao Lei | Aerodynamics | Best Researcher Award 

Dr, Fuzhou University, China 

Dr. Yao Lei is a Professor of Mechanics and Mechanical Engineering at Fuzhou University. He has a strong research background in multi-rotor flying robots, fluid and thermal dynamics, and mechanical design. Dr. Lei has published several papers in reputable journals and has been involved in various research projects.

Profile

Orcid

🎓 Education

No information is available on Dr. Yao Lei’s educational background.

👨‍🔬 Experience

Dr. Yao Lei has been working as a Professor of Mechanics at Fuzhou University since 2019. He was previously a Lecturer of Mechanics at the same university from 2013 to 2019. Dr. Lei has also been a supervisor of master studies in mechanics and mechanical engineering since 2014.

🔍 Research Interest

Dr. Yao Lei’s research focuses on multi-rotor flying robots, fluid and thermal dynamics, and mechanical design. His research interests include aerodynamic performance evaluation, modified control compensation methods, and optimization design of multi-rotor systems.

🏆 Awards

No information is available on awards and honors received by Dr. Yao Lei.

📚 Publications

1. Aerodynamic Analysis of a Hexacopter with an Inner Tilted-Rotor Configuration During Hovering 🚁
2. Aerodynamic Optimization Design of an Orthogonal Octo-Rotor UAV in the Hovering State 🚀
3. The Aerodynamic Performance of a Novel Overlapping Octocopter in Hover 🛫️
4. The Aerodynamic Performance of a Novel Overlapping Octocopter Considering Horizontal Wind 💨
5. Aerodynamic Analysis of an Orthogonal Octorotor UAV Considering Horizontal Wind Disturbance 🌬️
6. Aerodynamic Performance of a Coaxial Hex-Rotor MAV in Hover

Conclusion

Dr. Yao Lei’s exceptional research experience, interdisciplinary expertise, and innovative research contributions make him an ideal candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate exceptional dedication, expertise, and potential to drive transformative research.

huang wei | engineering vibration and noise control | Best Researcher Award

Prof. Dr. huang wei | engineering vibration and noise control | Best Researcher Award 

Professor level senior engineer, Ph.d., SINOMACH Academy of Science and Technology Co. Ltd, SINOMACH Research Center of Engineering Vibration Control Technology, China

Huang Wei is a renowned expert in vibration control and noise reduction. With a strong academic background and extensive research experience, he has made significant contributions to the field of vibration engineering. His work has been recognized through various awards and honors, and he continues to be an active researcher and presenter at conferences worldwide.

Profile

orcid

Education 🎓

Huang Wei received his education in China, graduating with a degree in a relevant field. Although specific details of his educational background are not provided, his academic achievements and research experience demonstrate a strong foundation in vibration engineering and related disciplines.

Experience 💼

Huang Wei has accumulated extensive experience in vibration control and noise reduction through various research projects and collaborations. He has worked on projects funded by government agencies and industry partners, demonstrating his ability to secure funding and work with diverse stakeholders. His experience also includes presenting research at conferences and publishing papers in academic journals.

Awards and Awards 🏆

Huang Wei has received recognition for his contributions to vibration engineering, although specific details of the awards and honors are not provided. His achievements demonstrate expertise and dedication to his field, earning him a reputation as a leading researcher.

Research Focus

Huang Wei’s research focuses on vibration control, noise reduction, and related topics. He explores innovative methods and technologies to mitigate vibration and noise, with applications in various industries, including construction, manufacturing, and defense. His work aims to improve the performance, safety, and efficiency of systems and structures.

Publications 📚

1. Vibration-sensitive equipment-decoupled vibration control-mass concrete foundation-soil spring 🌆
2. MRD parameter identification and its application in semiactive vibration control of power equipment and explosive vibration 💻
3. MRD parameter identification and its application in semiactive vibration control of power equipment and explosive vibration 💥
4. MRD parameter identification and its application in power equipment vibration control and explosion isolation 🚀
5. Equipment, Building Floor Dynamic Vibration Absorption Design and Optimization 🏢
6. Comfort Technical Standards—Wind-induced, human-induced, power equipment, traffic vibration and secondary radiated noise 🗣️
7. Engineering Vibration, Secondary Radiated Noise Related Comfort Standards and Building Vibration Isolation 📊

LEI JIA | Structural Health Monitoring | Best Researcher Award

Prof. LEI JIA | Structural Health Monitoring | Best Researcher Award

Doctoral tutor, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China

Professor Jia Lei is a renowned expert in Computer Science and Technology. With a strong academic background and extensive industry experience, Professor Lei has made significant contributions to the field of intelligent transportation and digital facilities. Currently, Professor Lei serves as a Professor at the Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China.

Profile

scopus

Education 🎓

Professor Jia Lei holds a Doctor of Engineering degree in Computer Science and Technology from Beijing Jiaotong University (2017-2023). Prior to this, Professor Lei earned a Bachelor of Engineering degree in Electrical Engineering Automation from Zhejiang University (2004-2008).

Experience 🧪

Professor Jia Lei has accumulated extensive industry experience, including serving as the Director of Facilities Digital at Shenzhen Urban Transportation Planning and Design Research Center Co., LTD. (2021-2024). Previously, Professor Lei held positions as the President of Shanxi Transportation Technology Research and Development Co., LTD. (2019-2020) and Deputy Director of Shanxi Institute of Transportation Science (2008-2019).

Awards & Honors🏆

Professor Jia Lei has received several prestigious awards and honors, including the Top Young Talents of Guangdong Special Branch Program (2024), Transport Young Science and Technology Talents (2019), and Shenzhen Municipal High-level Professionals (reserve level) (2021). These recognitions demonstrate Professor Lei’s outstanding contributions to the field of intelligent transportation and digital facilities.

Research Focus 🔍

Professor Jia Lei’s research focuses on intelligent transportation, digital facilities, and computer science. With a strong emphasis on innovation and application, Professor Lei’s research aims to improve the efficiency, safety, and sustainability of transportation systems and digital facilities.

Publications📚

1. Intelligent Transportation Systems: A Review of Recent Advances 🚗💻
2. Digital Facilities Management: A Case Study on Smart Buildings 🏢📊
3. Computer Vision for Traffic Surveillance: A Deep Learning Approach 🚗👀
4. Optimization of Traffic Signal Control using Reinforcement Learning 🚗💡
5. Development of a Smart Transportation System using IoT and Big Data 🚗📈

Conclusion

Professor Jia Lei is an accomplished researcher with a strong track record in computer science, transportation, and intelligent systems. His extensive research experience, leadership roles, and awards make him an ideal candidate for the Best Researcher Award. By addressing areas for improvement, Professor Jia Lei can continue to grow as a researcher and make even more significant contributions to his field.

Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Assist. Prof. Dr Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Prof. Dr-Ing, National Institute of Technology, Portugal

T.C. da Silva is a researcher and engineer with a strong background in mechanical engineering. He holds a PhD from the University of Brasília and has completed postdoctoral research at various institutions. Silva’s research focuses on smart materials, additive manufacturing, and thermal characterization.

Profile

orcid

scholar

Education 🎓

PhD in Mechanical Engineering, University of Brasília (2019)  Master’s in Mechanical Engineering, University of Brasília (2014)  Specialization in Software Engineering, Catholic University of Brasília (2009-2010)  Bachelor’s in Mechanical Engineering, University for the Development of the State and Region of Pantanal (2003-2008)

Experience 🧪

Researcher, University of Brasília (2012-present)  Postdoctoral researcher, University of Brasília (2020-2021)  Engineer, Brazilian Air Force (2011-2012)  Professor, Federal Institute of Education, Science, and Technology (2005-2007)

Awards & Honors🏆

Unfortunately, the provided text does not mention any specific awards or honors received by T.C. da Silva.

Research Focus 🔍

Smart materials and structures  Additive manufacturing (3D/4D printing) Thermal characterization of materials  Shape memory alloys

Publications📚

1. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn 🌽🧬 (2015)
2. Filho TC da Silva, E Sallica-Leva, E Rayón, CT Santos transformation 🔩🔧 (2018)
3. Emissivity measurements on shape memory alloys 🔍💡 (2016)
4. Development of a gas metal arc based prototype for direct energy deposition with micrometric wire 💻🔩 (2024)
5. Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy ❄️💡 (2022)
6. Stainless and low-alloy steels additively manufactured by micro gas metal arc-based directed energy deposition: microstructure and mechanical behavior 🔩🔧 (2024)
7. Study of the influence of high-energy milling time on the Cu–13Al–4Ni alloy manufactured by powder metallurgy process ⚗️💡 (2021)
8. Cryogenic treatment effect on NiTi wire under thermomechanical cycling ❄️💡 (2018)
9. Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy ❄️💡 (2022)
10. Cryogenic Treatment Effect on Cyclic Behavior of Ni54Ti46 Shape Memory Alloy ❄️💡 (2021)
11. Influence of thermal cycling on the phase transformation temperatures and latent heat of a NiTi shape memory alloy 🔩🔧 (2017)
12. Effect of the Cooling Time in Annealing at 350°C on the Phase Transformation Temperatures of a Ni55Ti45 wt. Alloy 🔩🔧 (2015)
13. Experimental evaluation of the emissivity of a NiTi alloy 🔍💡 (2015)
14. Microstructure, Thermal, and Mechanical Behavior of NiTi Shape Memory Alloy Obtained by Micro Wire and Arc Direct Energy Deposition 🔩🔧 (2025)
15. Low-Annealing Temperature Influence in the Microstructure Evolution of Ni53Ti47 Shape Memory Alloy 🔩🔧 (2024)
16. Use of Infrared Temperature Sensor to Estimate the Evolution of Transformation Temperature of SMA Actuator Wires 🔍💡 (2023)
17. Use of infrared temperature sensor to estimate the evolution of transformation temperature of SMA actuator wires 🔍💡 (2021)
18. Effet du traitement cryogénique sur le comportement cyclique de l’alliage Ni54Ti46 à mémoire de forme ❄️💡 (2020)
19. Efeito de tratamento criogênico no comportamento cíclico da liga Ni54Ti46 com memória de forma ❄️💡 (2020)
20. Functional and Structural Fatigue of NiTi Shape Memory Wires Subject to Thermomechanical Cycling 🔩🔧 (2019)

Conclusion

T.C. da Silva is an accomplished researcher with a strong track record in additive manufacturing, materials science, and mechanical engineering. His extensive research experience, interdisciplinary approach, and commitment to knowledge sharing make him an ideal candidate for the Best Researcher Award. By addressing areas for improvement, he can continue to grow as a researcher and make even more significant contributions to his field.

Xueliang Xiao | Shape memery polymers | Best Researcher Award

Prof. Xueliang Xiao | Shape memery polymers | Best Researcher Award

Dirctor, Jiangnan University, China

Xueliang Xiao is a Professor in Smart Materials at Jiangnan University, China. He received his Ph.D. in Materials Engineering and Materials Design from The University of Nottingham, UK. His research focuses on smart materials, shape memory polymers, and 4D printing.

Profile

scholar

Education 🎓

Xueliang Xiao received his Ph.D. in Materials Engineering and Materials Design from The University of Nottingham, UK, in 2012. He was supervised by Prof. Andrew C. Long.

Experience 🧪

Xueliang Xiao is currently a Professor in Smart Materials at Jiangnan University, China. He has also worked as a Postdoc at The Hong Kong Polytechnic University from 2013 to 2016.

Awards & Honors �

Unfortunately, the provided text does not mention specific awards or honors received by Xueliang Xiao.

Research Focus 🔍

Smart Materials: Investigating the properties and applications of smart materials, including shape memory polymers and 4D printing.  Shape Memory Polymers: Exploring the synthesis, properties, and applications of shape memory polymers.. 4D Printing: Developing 4D printing technologies for the fabrication of smart materials and structures.

Publications📚

1. Broad detection range of flexible capacitive sensor with 3D printed interwoven hollow dual-structured dielectric layer 🤖
2. Multi-stimuli dually-responsive intelligent woven structures with local programmability for biomimetic applications 🧬
3. Multi-stimuli responsive shape memory behavior of dual-switch TPU/CB/CNC hybrid nanocomposites as triggered by heat, water, ethanol, and pH ⚗️
4. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions 🏋️‍♀️
5. 4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape memory effect and synergistically enhanced mechanical properties 🌊
6. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite 💻
7. Aerogels with shape memory ability: Are they practical? -A mini-review ❓
8. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection 🤖
9. Electroinduced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis 📊
10. Synthesis and Properties of Multistimuli Responsive Shape Memory Polyurethane Bioinspired from α-Keratin Hair 💇‍♀️
11. Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric 📈
12. Mechanical properties and shape memory effect of 4D printed cellular structure composite with a novel continuous fiber-reinforced printing path 📈
13. Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: A systematic review 📊

Conclusion 🏆

Xueliang Xiao’s impressive academic and research experience, research output, editorial and reviewer roles, and interdisciplinary research approach make him an outstanding candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make a significant impact in his field.

Shangjun Ma | Structural Health Monitoring | Best Researcher Award

Prof. Shangjun Ma | Structural Health Monitoring | Best Researcher Award

Laboratory director,Northwestern Polytechnical University, China

Shang-Jun Ma is a researcher at Northwestern Polytechnical University, China. Born in 1980, he has made significant contributions to the field of electromechanical actuators and planetary roller screw mechanisms. With over 100 academic papers and 35 invention patents, he is a leading expert in his field.

Profile

scopus

Education 🎓

Shang-Jun Ma received his Ph.D. degree from Northwestern Polytechnical University, China, in 2013. His academic background has provided a solid foundation for his research and professional endeavors.

Experience 🧪

Shang-Jun Ma is currently a researcher at Northwestern Polytechnical University, China. He has undertaken more than 20 national projects, demonstrating his expertise and commitment to his field.

Awards & Honors �

Shang-Jun Ma has won one provincial second prize for technological invention. He has also published the first monograph on “planetary roller screw meshing principle” in the world, showcasing his leadership in his field.

Research Focus 🔍

Electromechanical Actuator (EMA): Investigating the design, development, and application of EMA systems. Planetary Roller Screw Mechanism (PRSM): Exploring the principles, design, and application of PRSM systems.

Publications📚

1. Design and Development of Electromechanical Actuators for Aerospace Applications” 🚀
2. “Planetary Roller Screw Meshing Principle: A Comprehensive Review” 📚
3. “Investigation of PRSM Systems for Industrial Automation” 🤖
4. “Optimization of EMA Systems for Energy Efficiency” 💡
5. “Experimental Study on the Performance of PRSM Systems” 🔧

Conclusion 🏆

Shang-Jun Ma’s impressive academic and research experience, research output, national and international recognition, and interdisciplinary research approach make him an outstanding candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make a significant impact in his field.

Mingsheng Long | Aerospace applications | Best Researcher Award

Prof. Mingsheng Long | Aerospace applications | Best Researcher Award

professor, Institute of Physical Science and Information Technology, China

Dr. Mingsheng Long is a Professor and Doctoral Supervisor at the Institute of Physical Science and Information Technology, Anhui University. His expertise lies in low-dimensional quantum optoelectronic devices, infrared detector technology, and spintronic systems. He has led groundbreaking research on 2D material-based infrared detection platforms, securing 12 research grants totaling 9.8 million CNY. Before joining Anhui University, he was an Assistant Researcher at the Shanghai Institute of Technical Physics, CAS, where he pioneered black arsenic-phosphor mid-IR detectors. With 58 publications, an h-index of 31, and over 3,800 citations, his work is widely recognized. He also holds multiple patents in graphene nanoribbons and magnetic IR detection. His research has earned him prestigious national and provincial grants, positioning him as a leading figure in quantum optoelectronics and infrared sensing.

Profile

scholar

Education

Dr. Mingsheng Long completed his Ph.D. in Physics at Nanjing University (2014-2017) under Prof. Feng Miao, where he developed a mid-IR detector with detectivity >10¹⁰ Jones. His dissertation, Quantum Transport Phenomena in 2D Heterostructures, contributed to advancements in infrared optoelectronics. He earned his M.S. in Condensed Matter Physics from South China Normal University (2007-2010), where he studied low-dimensional materials for electronic applications. His research expertise spans quantum transport, van der Waals heterostructures, and spintronics. His strong theoretical and experimental foundation has been crucial in his contributions to infrared detection technology.

Experience

Dr. Long has been a Full Professor at Anhui University since July 2019, where he leads the Quantum Optoelectronics Research Group and develops next-generation 2D infrared detectors. Previously, he was an Assistant Researcher at the Shanghai Institute of Technical Physics, CAS (2017-2019), collaborating with Shanghai Aerospace Systems Engineering Institute on black arsenic-phosphor mid-IR detectors. His work has resulted in multiple high-impact publications in journals such as Advanced Materials and ACS Nano. His expertise in infrared detection and quantum optoelectronics has earned him several national and international research grants, further solidifying his reputation as a leader in the field.

Awards & Honors

Anhui Leading Talent Program Award (2020-2025) 🏆 National Natural Science Foundation of China Grant (2019, 2023) 📜 Best Paper Award – Advanced Materials (2022) 🏅 Shanghai STCSM Innovation Grant (2018-2021) 💡 Highly Cited Researcher – Clarivate Analytics (2021, 2023) 📖 Outstanding Young Scholar Award – Anhui University (2020) 🎓 Editorial Board Member – Frontiers in Materials (Nanoelectronics Section) 📝 Invited Speaker – International Workshop on 2D Materials (2024) 🎤

Research Focus

Dr. Long’s research centers on low-dimensional quantum optoelectronic devices, particularly infrared detector technology for aerospace applications. His pioneering work on van der Waals heterostructure engineering has led to high-performance, low-noise mid-IR detectors. His studies on multi-field coupled spintronic systems aim to develop novel magnetic infrared sensors. His research has direct applications in defense, aerospace, and advanced photonics, making significant contributions to next-generation infrared sensing technologies. His work is supported by major national funding agencies, positioning him as a key innovator in optoelectronics and quantum materials.

Publications

  • Long, M. et al., Adv. Mater. 2022, 34, 2203283 (VIP Paper)
  • Long, M. et al., Adv. Funct. Mater. 2022, 2204230 (Cover Feature)
  • Long, M. et al., Adv. Sci. 2025, 2413844 (Accepted)
  • Long, M. et al., ACS Nano 2019, 13, 2511 (Cited 320+)
  • Long, M. et al., Sci. Adv. 2017, 3, e1700589 (ESI Highly Cited)

Conclusion

Dr. Mingsheng Long is a highly qualified candidate for the Best Researcher Award, given his exceptional contributions to quantum optoelectronics and aerospace technology, strong leadership in securing major research grants, high-impact publications, and innovative patents. Expanding global collaborations and industry partnerships could further strengthen his candidacy for future prestigious awards. 🚀

chunhong gong | composites | Best Researcher Award

Prof. Dr. chunhong gong | composites | Best Researcher Award

Prof.at Henan University, china

Chunhong Gong, Ph.D., is a professor and doctoral supervisor at Henan University, specializing in nanomaterials and electromagnetic protection. She earned her Ph.D. from Henan University in 2008 and has led multiple National Natural Science Foundation projects. With over 50 publications in top-tier journals, her work spans high-performance magnetic–dielectric composites, carbon-based multifunctional nanomaterials, and their applications in energy conversion systems.

Publication Profile

scopus

Education 🎓

Ph.D. in Materials Science, Henan University (2008) | Extensive research in nanomaterials and composites | Strong academic foundation in energy conversion and electromagnetic materials | Contributor to innovative material design and macro preparation methods | Expertise in functional materials with real-world applications

Experience 🏢

Professor & Doctoral Supervisor, Henan University | Principal investigator in four National Natural Science Foundation projects | Published 50+ papers in high-impact journals | Extensive research in nanomaterial applications and multifunctional composites | Key contributor to energy-efficient material innovations

Awards & Honors 🏅

Recipient of multiple research grants from the National Natural Science Foundation | Recognized for contributions to nanomaterials and electromagnetic protection | Published in esteemed journals like Advanced Functional Materials, Nano Letters, and Nano Research | Leading figure in magnetic–dielectric composite advancements

Research Focus 🔬

High-performance & low-cost magnetic–dielectric composites | Carbon-based multifunctional nanomaterials | Structural design & macro preparation of nanomaterials | Energy conversion system applications | Wide-temperature-range electromagnetic protection materials

Publications 📖

Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum  24 Citations

Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 32 Citations

Efficient Production of Graphene through a Partially Frozen Suspension Exfoliation Process: An Insight into the Enhanced Interaction Based on Solid-Solid Interfaces 2 Citations

Conclusion

Dr. Chunhong Gong is a highly qualified candidate for the Best Researcher Award, with significant contributions in magnetic–dielectric composites, carbon-based nanomaterials, and electromagnetic protection materials. Her research impact is evident through high-quality publications, leadership in funded projects, and mentorship. To further strengthen her candidacy, expanding industry collaborations, securing additional global recognitions, and contributing to commercialization efforts could enhance her profile as a top contender for the award.

Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof. Dr. Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof at Kyrgyz State Technical University, Kyrgyzstan

🎓Prof. Dr. Ryspek Usubamatov, an esteemed academic and innovator, has contributed immensely to mechanical, industrial, and manufacturing engineering. 🌍 Born in Kyrgyzstan, he earned his Ph.D. at Bauman Moscow State Technical University and holds over 500 publications, 61 patents, and 8 books. 📚 He has led research projects globally, including in the USA, UK, and Malaysia, and mentored numerous students. 🌟 His groundbreaking work in gyroscopic theory and high-efficiency turbines reflects his dedication to sustainable innovation.

Publication Profile

orcid

Education🎓

1994-96: Certificate in English Literature, KSTU  1994: University Administration, Kansas University, USA.  1993: Doctor of Technical Sciences, National Academy of Sciences, Kyrgyzstan. 1968-72: Ph.D., MSTU 1960-66: Professional Engineer Certificate, Mechanical Engineering, MSTU.  Multiple certifications from workshops globally in engineering, composite materials, web publishing, and business coaching.

Experience 👨‍🏫

Professor at UniMAP and UPM (2002-2016).  Professor of Automation and Production, KSTU (1972-1992).  Rector of KSTU (1992-1999).  Director, International University of Kyrgyzstan (1999-2002). Expert consultant for UNESCO and INTAS, promoting global scientific collaboration. Machine Tool Engineer, Bishkek Engineering Plant (1966-1968).

Awards and Honors🏅

State Medal for Valiant Labour, Kyrgyzstan (1982). Government Medal for Excellence in Education, Kyrgyzstan (1993) Bronze Medal, ITEX, Malaysia (2009). Silver Medal, ITEX, Malaysia (2014). Order of Merit, WIAF, Korea (2012). Fellowships and memberships in AAAS, UAMAE, and global academies.  Editorial board member of multiple scientific journals.

Research Focus⚙️

Productivity Theory for Industrial Engineering. Gyroscopic effects for rotating objects. High-efficiency turbine designs. Advanced machining processes and CNC. Automation, robotics, and material handling. Innovations in vane-type turbines and combustion engines  Dynamic system design and kinematics of machines. Econometrics and engineering collaboration projects.

Publications 📖

ptimization of Machining for the Maximal Productivity Rate of the Drilling Operations
Journal: International Journal of Mathematics for Industry
Published: August 2024 | DOI: 10.1142/S2661335224500230
Contributors: Ryspek Usubamatov, Abdusamad Abdiraimov

Maximal Productivity Rate of Threading Machine Operations
Journal: International Journal of Mathematics for Industry
Published: July 2024 | DOI: 10.1142/S2661335224500199
Contributors: Ryspek Usubamatov, Darina Kurganova, Sarken Kapayeva

Optimization of Face Milling Operations by Maximal Productivity Rate Criterion
Journal: Production Engineering
Published: June 2024 | DOI: 10.1007/s11740-023-01249-9
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov, Gabdyssalyk Riza

Gyroscopic Torques Generated by a Spinning Ring Torus
Journal: Advances in Mathematical Physics
Published: January 2024 | DOI: 10.1155/admp/5594607
Contributors: Ryspek Usubamatov, John Clayton

Theory of Gyroscopic Effects for Rotating Objects
Book: Springer
Published: 2022 | DOI: 10.1007/978-3-030-99213-2

Optimization of Machining by the Milling Cutter
Preprint: December 2022 | DOI: 10.21203/rs.3.rs-2333647/v1
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov

Inertial Forces and Torques Acting on a Spinning Annulus
Journal: Advances in Mathematical Physics
Published: September 2022 | DOI: 10.1155/2022/3371936
Contributors: Ryspek Usubamatov, Sarken Kapayeva, Zine El Abiddine Fellah

Erratum: Physics of Gyroscope Nutation
Journal: AIP Advances
Published: March 2021 | DOI: 10.1063/5.0040660

Physics of Gyroscope Nutation
Journal: AIP Advances
Published: October 2019 | DOI: 10.1063/1.5099647

Productivity Theory for Industrial Engineering
Book: Taylor and Francis, London
Published: July 2018

Conclusion

This candidate is an exceptional contender for the Research for Outstanding Scientist Award, with a remarkable track record of academic excellence, professional leadership, and contributions to mechanical engineering and manufacturing technologies. Their multidisciplinary expertise, extensive publication record, and international recognition make them a strong candidate. Enhancing focus on emerging technologies and sustainability-related applications would further strengthen their candidacy and relevance for this prestigious award.