Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Assist. Prof. Dr Tadeu Castro da Silva | Additive manufacturing technologies | Best Researcher Award

Prof. Dr-Ing, National Institute of Technology, Portugal

T.C. da Silva is a researcher and engineer with a strong background in mechanical engineering. He holds a PhD from the University of Brasília and has completed postdoctoral research at various institutions. Silva’s research focuses on smart materials, additive manufacturing, and thermal characterization.

Profile

orcid

scholar

Education 🎓

PhD in Mechanical Engineering, University of Brasília (2019)  Master’s in Mechanical Engineering, University of Brasília (2014)  Specialization in Software Engineering, Catholic University of Brasília (2009-2010)  Bachelor’s in Mechanical Engineering, University for the Development of the State and Region of Pantanal (2003-2008)

Experience 🧪

Researcher, University of Brasília (2012-present)  Postdoctoral researcher, University of Brasília (2020-2021)  Engineer, Brazilian Air Force (2011-2012)  Professor, Federal Institute of Education, Science, and Technology (2005-2007)

Awards & Honors🏆

Unfortunately, the provided text does not mention any specific awards or honors received by T.C. da Silva.

Research Focus 🔍

Smart materials and structures  Additive manufacturing (3D/4D printing) Thermal characterization of materials  Shape memory alloys

Publications📚

1. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn 🌽🧬 (2015)
2. Filho TC da Silva, E Sallica-Leva, E Rayón, CT Santos transformation 🔩🔧 (2018)
3. Emissivity measurements on shape memory alloys 🔍💡 (2016)
4. Development of a gas metal arc based prototype for direct energy deposition with micrometric wire 💻🔩 (2024)
5. Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy ❄️💡 (2022)
6. Stainless and low-alloy steels additively manufactured by micro gas metal arc-based directed energy deposition: microstructure and mechanical behavior 🔩🔧 (2024)
7. Study of the influence of high-energy milling time on the Cu–13Al–4Ni alloy manufactured by powder metallurgy process ⚗️💡 (2021)
8. Cryogenic treatment effect on NiTi wire under thermomechanical cycling ❄️💡 (2018)
9. Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy ❄️💡 (2022)
10. Cryogenic Treatment Effect on Cyclic Behavior of Ni54Ti46 Shape Memory Alloy ❄️💡 (2021)
11. Influence of thermal cycling on the phase transformation temperatures and latent heat of a NiTi shape memory alloy 🔩🔧 (2017)
12. Effect of the Cooling Time in Annealing at 350°C on the Phase Transformation Temperatures of a Ni55Ti45 wt. Alloy 🔩🔧 (2015)
13. Experimental evaluation of the emissivity of a NiTi alloy 🔍💡 (2015)
14. Microstructure, Thermal, and Mechanical Behavior of NiTi Shape Memory Alloy Obtained by Micro Wire and Arc Direct Energy Deposition 🔩🔧 (2025)
15. Low-Annealing Temperature Influence in the Microstructure Evolution of Ni53Ti47 Shape Memory Alloy 🔩🔧 (2024)
16. Use of Infrared Temperature Sensor to Estimate the Evolution of Transformation Temperature of SMA Actuator Wires 🔍💡 (2023)
17. Use of infrared temperature sensor to estimate the evolution of transformation temperature of SMA actuator wires 🔍💡 (2021)
18. Effet du traitement cryogénique sur le comportement cyclique de l’alliage Ni54Ti46 à mémoire de forme ❄️💡 (2020)
19. Efeito de tratamento criogênico no comportamento cíclico da liga Ni54Ti46 com memória de forma ❄️💡 (2020)
20. Functional and Structural Fatigue of NiTi Shape Memory Wires Subject to Thermomechanical Cycling 🔩🔧 (2019)

Conclusion

T.C. da Silva is an accomplished researcher with a strong track record in additive manufacturing, materials science, and mechanical engineering. His extensive research experience, interdisciplinary approach, and commitment to knowledge sharing make him an ideal candidate for the Best Researcher Award. By addressing areas for improvement, he can continue to grow as a researcher and make even more significant contributions to his field.

Xueliang Xiao | Shape memery polymers | Best Researcher Award

Prof. Xueliang Xiao | Shape memery polymers | Best Researcher Award

Dirctor, Jiangnan University, China

Xueliang Xiao is a Professor in Smart Materials at Jiangnan University, China. He received his Ph.D. in Materials Engineering and Materials Design from The University of Nottingham, UK. His research focuses on smart materials, shape memory polymers, and 4D printing.

Profile

scholar

Education 🎓

Xueliang Xiao received his Ph.D. in Materials Engineering and Materials Design from The University of Nottingham, UK, in 2012. He was supervised by Prof. Andrew C. Long.

Experience 🧪

Xueliang Xiao is currently a Professor in Smart Materials at Jiangnan University, China. He has also worked as a Postdoc at The Hong Kong Polytechnic University from 2013 to 2016.

Awards & Honors �

Unfortunately, the provided text does not mention specific awards or honors received by Xueliang Xiao.

Research Focus 🔍

Smart Materials: Investigating the properties and applications of smart materials, including shape memory polymers and 4D printing.  Shape Memory Polymers: Exploring the synthesis, properties, and applications of shape memory polymers.. 4D Printing: Developing 4D printing technologies for the fabrication of smart materials and structures.

Publications📚

1. Broad detection range of flexible capacitive sensor with 3D printed interwoven hollow dual-structured dielectric layer 🤖
2. Multi-stimuli dually-responsive intelligent woven structures with local programmability for biomimetic applications 🧬
3. Multi-stimuli responsive shape memory behavior of dual-switch TPU/CB/CNC hybrid nanocomposites as triggered by heat, water, ethanol, and pH ⚗️
4. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions 🏋️‍♀️
5. 4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape memory effect and synergistically enhanced mechanical properties 🌊
6. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite 💻
7. Aerogels with shape memory ability: Are they practical? -A mini-review ❓
8. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection 🤖
9. Electroinduced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis 📊
10. Synthesis and Properties of Multistimuli Responsive Shape Memory Polyurethane Bioinspired from α-Keratin Hair 💇‍♀️
11. Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric 📈
12. Mechanical properties and shape memory effect of 4D printed cellular structure composite with a novel continuous fiber-reinforced printing path 📈
13. Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: A systematic review 📊

Conclusion 🏆

Xueliang Xiao’s impressive academic and research experience, research output, editorial and reviewer roles, and interdisciplinary research approach make him an outstanding candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make a significant impact in his field.