Mohammadmahdi Amini | Structural health monitoring | Best Researcher Award

Mr. Mohammadmahdi Amini | Structural health monitoring | Best Researcher Award

Innovation & Technology Manager at Laskaridis Shipping Co. LTD, Greece

🎓 Mohammadmahdi Amini, a skilled BIM Modeler born in 1995, has over 3 years of professional expertise in Revit-based Building Information Modeling (BIM). 🌍 Based in Damghan, Semnan, Iran, he has authored three Q1 Elsevier journal papers exploring the effects of magnetic fields on concrete properties. 🏗️ Proficient in Autodesk Revit, AutoCAD, and advanced design software, Mohammadmahdi excels in architectural design, construction documentation, and quantity surveying. ✍️ Fluent in English with an IELTS score of 6, he thrives in collaborative environments, showcasing a passion for innovative civil engineering solutions.

Publication Profile

orcid

Education🎓

Mohammadmahdi holds a Bachelor’s degree in Civil Engineering from Semnan University, Iran (2014–2019). 🏫 Specializing in structural analysis and concrete technologies, he developed a foundational understanding of construction methodologies and project management. 📚 With a GPA of 13.73, his academic journey laid the groundwork for his advanced research in magnetic fields’ effects on concrete, culminating in contributions to high-impact journals. ✨ Semnan University was instrumental in shaping his technical and analytical abilities, inspiring his pursuit of excellence in BIM modeling and civil engineering research.

Experience 💼

As a BIM Modeler at Agourconstruction (Dec 2020–Feb 2024), Mohammadmahdi specialized in Revit-based architectural drafting, quantity surveying, and cost estimation. 📊 His role extended to supervision assistance and resident engineering, ensuring project execution met quality standards. 🏗️ With a keen eye for detail, he collaborated with multidisciplinary teams to deliver efficient construction documentation. ✨ Leveraging his Revit and AutoCAD expertise, he optimized workflows and developed innovative solutions for construction challenges. 🌟 His commitment to excellence has consistently driven successful project outcomes.

Awards and Honors 🏅

Elsevier Recognition: Published three Q1 journal papers in 2024, advancing research in magnetic fields’ effects on concrete. Academic Achievement: Recognized for contributing innovative methodologies to concrete technologies at Semnan University Innovation Awards: Praised for applying novel magnetic approaches in structural engineering solutions. Professional Excellence: Earned commendations for delivering high-quality BIM projects and advancing Revit-based construction workflows.

Research Focus 🔬

Mohammadmahdi’s research centers on leveraging magnetic fields to enhance concrete’s mechanical properties. 🧲 His studies delve into the compressive strength of concrete enriched with silica sand, ferrosilicon, and nano-silica. 📖 His publications include experimental and numerical investigations of magnetic field effects, aiming to improve concrete’s durability and magnetization. 💡 A pioneering approach integrates nanotechnology and magnetic innovations for advanced construction materials. ✨ His work bridges theory and application, inspiring sustainable and efficient civil engineering solutions.

Publications 📖

1. Numerical Investigation on the Impact of Alternating Magnetic Fields on the Mechanical Properties of Concrete with Various Silica Sand and Ferrosilicon Compositions

Authors: Ghanepour, M.; Amini, M.M.; Rezaifar, O.
Journal: Results in Engineering
Volume: 24
Article ID: 103631
Year: 2024
Citations: 0
This study investigates the mechanical behavior of concrete exposed to alternating magnetic fields, focusing on compositions incorporating silica sand and ferrosilicon. Advanced numerical simulations provide insights into how magnetic fields influence concrete’s structural performance and durability. This work serves as a significant step in optimizing construction materials for modern infrastructure.

2. Experimental Analysis of the Impact of Alternating Magnetic Fields on the Compressive Strength of Concrete with Various Silica Sand and Microsilica Compositions

Authors: Amini, M.M.; Ghanepour, M.; Rezaifar, O.
Journal: Case Studies in Construction Materials
Volume: 21
Article ID: e03487
Year: 2024
Citations: 3
This experimental study explores the compressive strength enhancement of concrete treated with alternating magnetic fields. It emphasizes how the integration of silica sand and microsilica alters the concrete’s properties under magnetic exposure. The findings highlight innovative strategies to improve concrete performance in high-demand applications.

3. A Novel Magnetic Approach to Improve Compressive Strength and Magnetization of Concrete Containing Nano Silica and Steel Fibers

Authors: Rezaifar, O.; Ghanepour, M.; Amini, M.M.
Journal: Journal of Building Engineering
Volume: 91
Article ID: 109342
Year: 2024
Citations: 7
This paper presents a groundbreaking approach to enhancing concrete’s compressive strength and magnetization through the inclusion of nano silica and steel fibers. The application of magnetic fields during the curing process demonstrates significant improvements in both mechanical and magnetic properties. This research has profound implications for the construction of magnetically sensitive and structurally robust materials.

Conclusion

Mohammadmahdi Amini demonstrates significant potential for the Research for Best Researcher Award due to his impactful publications, technical expertise, and innovative research on concrete properties. However, improving language proficiency, further diversifying research topics, and showcasing exceptional academic achievements could make his profile even more compelling for international recognition. Overall, he is a strong candidate for the award.

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian , Northwestern Polytechnical University, China

Dr. Jie Jian is a distinguished PostDoc in Materials Science at Northwestern Polytechnical University, specializing in photoelectrodes and photocatalysts. With expertise in nanomaterial synthesis and advanced film processing technologies, Dr. Jian has significantly contributed to the field through innovative research and optimization strategies. His academic journey includes a PhD and M.S. from NPU, focusing on BiVO4-nanocrystals and SiC ceramic composites, respectively, and a B.S. from Chongqing University. Dr. Jian has also gained industry experience as an engineer at Samsung Semiconductor. His work is characterized by a profound understanding of material characterization and software proficiency.

 

Professional Profiles:

Google Scholar

 

🌟 Technical-Scientific Skills 🌟

Mastering Preparation, Testing, and Characterization of photoelectrodes (photoanodes and photocathodes) and photocatalysts, proposing optimization strategies based on photoelectrochemical principles.Expert in Synthesis of Nanomaterials using pulsed laser irradiation in liquid and wet-chemical methods, and proficient in the design, synthesis, and functional exploration of porous materials.Film Processing Technologies: Skilled in spin coating, dip coating, chemical baths, electrodeposition, magnetron sputtering, and ALD.Material Characterization: Proficient in TEM, SEM, AFM, Raman, BET, UV-vis, XPS, XRD, FTIR.Software Proficiency: Photoshop, 3D-Max, Origin, Endnote, VESTA, Gatan, CAD, ChemDraw, Athena.

📚 Academic Education and Career 📚

03/2022-present
PostDoc in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Project: In-situ Embedding Nanocrystals/Clusters in Porous Materials for Efficient Photo(electro)catalysis09/2016-03/2023
PhD in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Thesis Title: Laser Derived Films of BiVO4-Nanocrystals for Efficient Photoelectrochemical Water Splitting04/2015-08/2016
Engineer, Samsung (China) Semiconductor Co., Ltd., Xi’an, China (SCS)
Task: Process controlling and equipment monitoring during chemical vapor deposition.09/2012-03/2015
M.S. in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Laifei Cheng
Thesis Title: Strengthening and Toughening of Laminated (SiCp+SiCw)/SiC Ceramic Composites09/2008-07/2012
B.S. in Materials Science and Engineering, Chongqing University (CQU)
Supervisor: Prof. Baifeng Luan
Thesis Title: Study on deformation structure and texture of pure zirconium with large grain size rolled at liquid nitrogen temperature
GPA: 3.55/4
Ranking: 3/72

📖 Publications Top Note :

Embedding Laser-Generated Nanocrystals in BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
J Jian, Y Xu, X Yang, W Liu, M Fu, H Yu, F Xu, F Feng, L Jia, D Friedrich, …
Nature Communications 10 (1), 2609 (2019)
Citations: 160

Recent Advances in Rational Engineering of Multinary Semiconductors for Photoelectrochemical Hydrogen Generation
J Jian, G Jiang, R van de Krol, B Wei, H Wang
Nano Energy 51, 457-480 (2018)
Citations: 160

Black BiVO4: Size Tailored Synthesis, Rich Oxygen Vacancies, and Sodium Storage Performance
X Xu, Y Xu, F Xu, G Jiang, J Jian, H Yu, E Zhang, D Shchukin, S Kaskel, …
Journal of Materials Chemistry A 8 (4), 1636-1645 (2020)
Citations: 67

Porous CuBi2O4 Photocathodes with Rationally Engineered Morphology and Composition Towards High-Efficiency Photoelectrochemical Performance
Y Xu, J Jian, F Li, W Liu, L Jia, H Wang
Journal of Materials Chemistry A 7 (38), 21997-22004 (2019)
Citations: 61

Ordered Porous BiVO4 Based Gas Sensors with High Selectivity and Fast-Response Towards H2S
C Li, X Qiao, J Jian, F Feng, H Wang, L Jia
Chemical Engineering Journal 375, 121924 (2019)
Citations: 59