Luis Pérez Domínguez | Methaheuristic and Multicriteria | Best Researcher Award

Prof. Dr. Luis Pérez Domínguez | Methaheuristic and Multicriteria | Best Researcher Award

UNIVERSIDAD AUTONOMA DE CIUDAD JUAREZ | Mexico

Professor Luis Asunción Pérez-Dominguez, a distinguished academic and researcher in industrial engineering, holds a B.Sc. in Industrial Engineering from Instituto Tecnológico de Villahermosa, Tabasco, México, an M.Sc. in Industrial Engineering from Instituto Tecnológico de Ciudad Juárez, Chihuahua, México, and a Ph.D. in the Science of Engineering from the Autonomous University of Ciudad Juárez, Chihuahua, México. Currently serving as a professor in research at the Universidad Autónoma de Ciudad Juárez, Dr. Pérez-Dominguez has dedicated his career to advancing knowledge and practice in multiple-criteria decision making, fuzzy set applications, and the implementation of continuous improvement tools within the manufacturing sector. His work bridges theoretical innovation and practical applications, focusing on improving efficiency, precision, and decision-making processes in industrial environments. Dr. Pérez-Dominguez is actively engaged with professional communities as a member of the Canadian Operational Research Society (CORS) and the Society for Industrial and Applied Mathematics (SIAM), demonstrating his commitment to global research standards and collaborative scientific advancement. Over his academic tenure, he has contributed numerous high-quality publications, providing insights into optimization, decision-making frameworks, and advanced analytical methodologies. He also emphasizes mentorship, supervising graduate and postgraduate research projects while fostering innovation among students and colleagues. His research consistently seeks to integrate modern computational methods, fuzzy logic principles, and multi-criteria evaluation techniques to address complex industrial problems. With a strong emphasis on continuous improvement, Dr. Pérez-Dominguez’s work empowers organizations to enhance operational efficiency, make informed strategic decisions, and adopt evidence-based methodologies in production and management. By combining rigorous academic research with practical industry insights, he has established himself as a leading authority in industrial engineering, known for translating complex concepts into actionable solutions for manufacturing systems, intelligent decision support, and optimization of industrial processes, positioning him as a highly influential figure in his field.

Featured Publications:

Pérez-Domínguez, L., Rodríguez-Picón, L. A., Alvarado-Iniesta, A., … MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making. Complexity, 134.

Ramírez-Ochoa, D. D., Pérez-Domínguez, L. A., Martínez-Gómez, E. A., … PSO, a swarm intelligence-based evolutionary algorithm as a decision-making strategy: A review. Symmetry, 14(3), 455.

Villagran-Vizcarra, D. C., Luviano-Cruz, D., Pérez-Domínguez, L. A., … Applications analyses, challenges and development of augmented reality in education, industry, marketing, medicine, and entertainment. Applied Sciences, 13(5), 2766.

Pérez-Domínguez, L., Alvarado-Iniesta, A., Rodríguez-Borbón, I., … Intuitionistic fuzzy MOORA for supplier selection. Dyna, 82(191), 34–41.

Garcia Aguirre, P. A., Perez-Dominguez, L., Luviano-Cruz, D., … PFDA-FMEA, an integrated method improving FMEA assessment in product design. Applied Sciences, 11(4), 1406.

Contreras-Masse, R., Ochoa-Zezzatti, A., García, V., Pérez-Dominguez, L., … Implementing a novel use of multicriteria decision analysis to select IIoT platforms for smart manufacturing. Symmetry, 12(3), 368.

Babak Akbari | Surface Modification | Best Researcher Award

Assoc. Prof. Dr. Babak Akbari | Surface Modification | Best Researcher Award

University of Tehran | Iran

Dr. Babak Akbari is an Assistant Professor in the Department of Medical Technology and Tissue Engineering at the School of Life Science Engineering, University of Tehran. With an academic foundation in materials science and engineering, his career has been shaped by a passion for biomaterials, nanocomposites, and regenerative medicine. Over the years, Dr. Akbari has made notable contributions to the development of advanced scaffolds and biomimetic devices for tissue engineering, with a focus on cartilage, bone, and dental applications. His research bridges fundamental materials engineering with biomedical applications, exploring surface modification, nanotechnology, and polymer-based systems for improved biocompatibility and mechanical performance. Dr. Akbari has authored numerous international and national journal articles, books, and conference proceedings. His collaborations with interdisciplinary teams reflect his commitment to innovation in biomaterials and medical technologies, positioning him as a recognized researcher in advancing materials for healthcare and biomedical applications.

Professional Profile

Orcid

Scholar

Education

Dr. Babak Akbari pursued all of his higher education at Sharif University of Technology, one of Iran’s leading institutions for engineering and science. He obtained his B.S. in Materials Engineering – Metal Forming, developing a strong foundation in materials processing and mechanical behavior. Building on this, he earned his M.S. in Materials Engineering – Materials Identification and Selection, where he specialized in analyzing material properties and optimizing their use for various applications. His graduate research strengthened his skills in experimental characterization and design of advanced materials. Dr. Akbari then completed his Ph.D. in Materials Science and Engineering, focusing on the mechanical properties, microstructure, and nanocomposites of polymers and metals. His doctoral work emphasized the relationship between processing, structure, and performance, which laid the groundwork for his later research in biomaterials, nanotechnology, and biomedical applications. This educational path uniquely positioned him at the intersection of engineering and life sciences.

Experience

Dr. Babak Akbari has built a distinguished academic and research career centered on materials science, nanotechnology, and biomedical engineering. Following his doctoral studies, he engaged in extensive research on polymer nanocomposites, biomaterials, and scaffold fabrication. Currently, he serves as Assistant Professor at the University of Tehran, where he teaches and supervises graduate students in the Medical Technology and Tissue Engineering Department. His professional expertise spans the design and fabrication of bio-inspired devices, development of nanocomposite scaffolds, and application of surface modification techniques for enhanced biomedical performance. He has also co-authored international books on 3D printing and cartilage biofabrication, published by renowned publishers such as Taylor & Francis and Springer. Dr. Akbari has presented his work at multiple international conferences and contributed to the growth of the field through collaborative projects. His academic role combines research, teaching, and mentoring, ensuring the training of the next generation of biomedical engineers.

Research Focus

Dr. Akbari’s research focuses on biomaterials, nanotechnology, and regenerative medicine. He specializes in the design and fabrication of nanocomposite scaffolds for tissue engineering, particularly in bone and cartilage regeneration. His work integrates polymer science, nanostructures, and surface modification techniques to develop biomimetic materials with enhanced mechanical strength, bioactivity, and cellular compatibility. Dr. Akbari also investigates drug delivery systems, employing polymer-based nanofibers and coatings for controlled release of antibiotics and bioactive molecules. His research extends to dental composites, biodegradable stents, and bio-inspired medical devices, highlighting his interdisciplinary approach. With expertise in 3D printing, electrospinning, and polymer functionalization, he aims to create scalable and clinically relevant solutions for tissue repair. Furthermore, his studies on nanoclay, carbon nanotubes, and graphene-based composites advance knowledge on hybrid biomaterials. Overall, Dr. Akbari’s research contributes to developing innovative platforms for improving healthcare outcomes through engineering-driven biomedical technologies.

Awards and Honors

Dr. Babak Akbari has received recognition for his contributions to biomaterials and tissue engineering research. His publications in high-impact journals and his role in pioneering nanocomposite scaffold design have earned him acknowledgment within the scientific community. His co-authored books, published by Taylor & Francis and Springer, are significant achievements reflecting his expertise in 3D printing and cartilage biofabrication. Dr. Akbari has been invited to present at national and international conferences, showcasing his research on polymer nanocomposites, scaffolds, and biomedical devices. His teaching excellence at the University of Tehran has been recognized by students and colleagues, and his collaborative research has attracted partnerships with international institutions. By contributing to interdisciplinary advancements in nanotechnology, drug delivery, and regenerative medicine, Dr. Akbari has established himself as a respected scholar. These honors reflect his dedication to bridging materials science with biomedical innovation to address pressing healthcare challenges.

Publication Top Notes

Conclusion

Babak Akbari demonstrates potential as a researcher in materials science and tissue engineering, with a strong academic background and research experience. His compilation of books on topics related to his research interests is notable, and his research has the potential to make a significant impact in his field. With further development of his international publication record and research funding, he could become a strong candidate for the Best Researcher Award.

Mr. Yongbiao Mu | Lithium ion batteries | Best Researcher Award

Mr. Yongbiao Mu | Lithium ion batteries | Best Researcher Award

PhD student of Medicine at Southern University of Science and Technology, China

Ph.D. in Material Science and Engineering (2021 – 2025) Southern University of Science and Technology (SUSTech), China Research Focus: Lithium/Zinc metal battery anodes, solid-state electrolytes, interface characterization.

Publication Profile

scholar

Education:

Ph.D. in Material Science and Engineering (2021 – 2025) Southern University of Science and Technology (SUSTech), China Research Focus: Lithium/Zinc metal battery anodes, solid-state electrolytes, interface characterization. M.S. in Materials Engineering (2016 – 2019) Harbin Institute of Technology (HIT), China Research Focus: Electrospun carbon nanofibers, CVD-grown vertically aligned graphene, lithium-ion battery anodes. B.S. in Water Quality Science and Technology (2004 – 2008) Nanjing Tech University, China Research Focus: Membrane materials, metal corrosion, and protection.

Work Experience:

Research Assistant (Mar. 2021 – Sep. 2021) Department of Mechanical and Energy Engineering, SUSTech, China. Engineer (Jan. 2019 – Mar. 2021) Materials Laboratory of Songshan Lake, Institute of Physics, Chinese Academy of Sciences, China.

Awards & Scholarships:

2023 National Scholarship for Ph.D. Students2023 Outstanding Graduate Student Model, SUSTech2023 Academic Star, SUSTech2022 Academic Star, SUSTech

Research Interests:

Key materials for secondary batteries (Lithium/Zinc metal anodes, solid-state electrolytes, high-energy-density silicon-carbon anodes).Advanced electrochemical characterizations (in-situ XRD, Raman, TEM, Aberration-Corrected EM, Cryo-EM). 

Publication  Top Notes

Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting

Authors: X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu

Journal: Nature Communications, 2021

DOI: 10.1038/s41467-021-21735-3

Summary: This study presents the synthesis of vertical nanosheets composed of graphene, MoS2, and FeCoNi hydroxides/phosphides on carbon fibers. The engineered structure exhibits high catalytic activity for overall water splitting due to enhanced charge transfer properties and effective electrocatalytic performance.

2. A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function

Authors: J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu, Y. Guo, J. Yu, X. Ma, Y. Qiu, Y. Huang

Journal: Journal of Materials Chemistry A, 2018

DOI: 10.1039/C8TA03155A

Summary: The research introduces a flexible Zn/PPy (polypyrrole) battery that features an electrochromic property allowing for a visual warning in case of a short circuit. This advancement improves battery safety and usability while maintaining high electrochemical performance.

3. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries

Authors: Y. Mu, Z. Li, B. Wu, H. Huang, F. Wu, Y. Chu, L. Zou, M. Yang, J. He, L. Ye

Journal: Nature Communications, 2023

DOI: 10.1038/s41467-023-41448-0

Summary: This paper discusses the development of 3D hierarchical graphene matrices that significantly improve the stability of Zn anodes in aqueous Zn batteries, addressing issues of dendrite formation and enhancing cycling performance.

4. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries

Authors: Y. Mu, M. Han, J. Li, J. Liang, J. Yu

Journal: Carbon, 2021

DOI: 10.1016/j.carbon.2021.03.045

Summary: The authors present a method for growing vertical graphene sheets on natural graphite, which enhances the fast charging capability of lithium-ion batteries. The novel structure aids in improved lithium ion transport and cycling stability.

5. Nitrogen, oxygen‐codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage

Authors: Y. Mu, M. Han, B. Wu, Y. Wang, Z. Li, J. Li, Z. Li, S. Wang, J. Wan, L. Zeng

Journal: Advanced Science, 2022

DOI: 10.1002/advs.202104685

Summary: This study explores a novel anode design combining nitrogen and oxygen-doped vertical graphene arrays with high silicon content, resulting in improved lithium storage performance and stability.

6. Vertical graphene growth on uniformly dispersed sub-nanoscale SiO x/N-doped carbon composite microspheres with a 3D conductive network

Authors: M. Han, Y. Mu, F. Yuan, J. Liang, T. Jiang, X. Bai, J. Yu

Journal: Journal of Materials Chemistry A, 2020

DOI: 10.1039/C9TA12253F

Summary: The paper details the growth of vertical graphene on a novel composite microsphere structure, achieving enhanced conductivity and mechanical stability suitable for energy storage applications.

7. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays

Authors: B. Wu, B. Guo, Y. Chen, Y. Mu, H. Qu, M. Lin, J. Bai, T. Zhao, L. Zeng

Journal: Energy Storage Materials, 2023

DOI: 10.1016/j.ensm.2023.01.001

Summary: The authors report on a 3D printing technique to create graphene arrays, significantly improving zinc utilization in aqueous zinc-ion batteries while ensuring long-term cycling stability.

8. Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes

Authors: M. Han, Z. Lin, X. Ji, Y. Mu, J. Li, J. Yu

Journal: Materials Today Energy, 2020

DOI: 10.1016/j.mten.2020.100445

Summary: This research focuses on creating flexible, porous vertical graphene layers that effectively manage the volume changes of silicon during cycling in lithium-ion batteries, thereby enhancing the durability of anodes.

9. Reconstruction of thiospinel to active sites and spin channels for water oxidation

Authors: T. Wu, Y. Sun, X. Ren, J. Wang, J. Song, Y. Pan, Y. Mu, J. Zhang, Q. Cheng, …

Journal: Advanced Materials, 2023

DOI: 10.1002/adma.202207041

Summary: This study investigates the transformation of thiospinel compounds into active sites for efficient water oxidation, contributing to advancements in photocatalytic water splitting technologies.

10. Oriented construction of efficient intrinsic proton transport pathways in MOF-808

Authors: X.M. Li, Y. Wang, Y. Mu, J. Gao, L. Zeng

Journal: Journal of Materials Chemistry A, 2022

DOI: 10.1039/D2TA02878K

Summary: This paper presents a method for constructing proton transport pathways in metal-organic frameworks (MOF-808), enhancing their efficiency in proton conduction applications.

11. Thermodynamically Stable Dual‐Modified LiF&FeF3 layer Empowering Ni‐Rich Cathodes with Superior Cyclabilities

Authors: Y. Chu, Y. Mu, L. Zou, Y. Hu, J. Cheng, B. Wu, M. Han, S. Xi, Q. Zhang, L. Zeng

Journal: Advanced Materials, 2023

DOI: 10.1002/adma.202212308

Summary: This research investigates a dual-modification approach to improve the stability and cyclability of Ni-rich cathodes, critical for advancing lithium-ion battery performance.

12. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications

Authors: Z. Li, Z. Lin, M. Han, Y. Mu, P. Yu, Y. Zhang, J. Yu

Journal: Chemical Engineering Journal, 2021

DOI: 10.1016/j.cej.2020.129826

Summary: The authors develop flexible composite films from electrospun carbon nanofibers and silicone, showcasing effective electromagnetic interference shielding and promising applications in electrothermal and photothermal technologies.

13. Recent advances in the anode catalyst layer for proton exchange membrane fuel cells

Authors: Z. Li, Y. Wang, Y. Mu, B. Wu, Y. Jiang, L. Zeng, T. Zhao

Journal: Renewable and Sustainable Energy Reviews, 2023

DOI: 10.1016/j.rser.2023.113182

Summary: This review summarizes recent advancements in anode catalyst layers for proton exchange membrane fuel cells, highlighting the materials and strategies that enhance performance.

14. High yield production of 3D graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes

Authors: X. Ji, Y. Mu, J. Liang, T. Jiang, J. Zeng, Z. Lin, Y. Lin, J. Yu

Journal: Carbon, 2021

DOI: 10.1016/j.carbon.2021.01.059

Summary: The authors present a method for producing 3D graphene powders via thermal chemical vapor deposition, which serve as highly efficient conductive additives in lithium-ion battery electrodes, enhancing electrochemical performance.

 

Marwa BEN SAID-ROMDHANE | Génie Electrique | Best Researcher Award

Assist Prof Dr. Marwa BEN SAID-ROMDHANE | Génie Electrique | Best Researcher Award

Professor of Medicine at Ecole Nationale d’Ingénieurs de Tunis, Tunisia

A. Sayah is an accomplished Associate Professor at ISSAT Gabès, Tunisia, specializing in electrical engineering. With a strong academic background and significant research contributions, they are dedicated to advancing sustainable energy solutions. Their innovative work spans solar power systems and electric vehicles, making a notable impact in the field.

Publication Profile

scholar

Education🎓 

Education: Ph.D. in Electrical Engineering (2012-2016) from ENIT, UTM, Tunisia, with a thesis focused on robust grid-connected converters. Previously earned an M.Sc. in Electrical Systems (2011-2012) and a B.Sc. in Electrical Engineering (2008-2011) from the same institution, showcasing a solid foundation in electrical engineering principles. 📚

Experience🛠️ 

Experience: Serving as an Associate Professor since 2020 at ISSAT Gabès, with prior positions at ENIT, UTM, and Ecole Nationale d’Ingénieurs de Carthage. They have also contributed as a Postdoctoral Researcher at LSE, enhancing their expertise in electrical energy applications and systems. 👨‍🏫

Awards and Honors🏆 

Awards and Honors: Recipient of the 2023 SSHN award for high-level research stays and multiple excellence scholarships from the ENIT Doctoral School in 2016 and 2017. Additionally, they hold fellowships from Université de Tunis El Manar and serve on the scientific committee of key conferences. 🥇

Research Focus🔍 

Research Focus: Their research primarily revolves around optimizing power systems in renewable energy applications, specifically focusing on solar-powered electric vehicles and microgrid technology. They strive to enhance power quality and energy efficiency, contributing to sustainable energy solutions in Tunisia and beyond. 🌞🔋

 

Publication  Top Notes

 

  • Robust Active Damping Methods for LCL Filter-Based Grid-Connected Converters
    • Authors: M.B. Saïd-Romdhane, M.W. Naouar, I. Slama-Belkhodja, E. Monmasson
    • Journal: IEEE Transactions on Power Electronics
    • Volume: 32
    • Issue: 9
    • Pages: 6739-6750
    • Year: 2016
    • Citations: 151
  • An Improved LCL Filter Design to Ensure Stability Without Damping and Despite Large Grid Impedance Variations
    • Authors: M.B. Said-Romdhane, M.W. Naouar, I. Slama-Belkhodja, E. Monmasson
    • Journal: Energies
    • Volume: 10
    • Issue: 3
    • Article: 336
    • Year: 2017
    • Citations: 106
  • Simple and Systematic LCL Filter Design for Three-Phase Grid-Connected Power Converters
    • Authors: M.B. Said-Romdhane, M.W. Naouar, I.S. Belkhodja, E. Monmasson
    • Journal: Mathematics and Computers in Simulation
    • Volume: 130
    • Pages: 181-193
    • Year: 2016
    • Citations: 73
  • A Review on Vehicle-Integrated Photovoltaic Panels
    • Authors: M. Ben Said-Romdhane, S. Skander-Mustapha
    • Book: Advanced Technologies for Solar Photovoltaics Energy Systems
    • Pages: 349-370
    • Year: 2021
    • Citations: 21
  • Grid Emulator for Small Scale Distributed Energy Generation Laboratory
    • Authors: S. Skander-Mustapha, M.J.B. Ghorbal, M.B. Said-Romdhane, M. Miladi, …
    • Journal: Sustainable Cities and Society
    • Volume: 43
    • Pages: 325-338
    • Year: 2018
    • Citations: 16
  • Time Delay Consideration for Robust Capacitor-Current-Inner-Loop Active Damping of LCL-Filter-Based Grid-Connected Converters
    • Authors: M.B. Saïd-Romdhane, M.W. Naouar, I. Slama-Belkhodja, E. Monmasson
    • Journal: International Journal of Electrical Power & Energy Systems
    • Volume: 95
    • Pages: 177-187
    • Year: 2018
    • Citations: 14
  • Analysis Study of City Obstacles Shading Impact on Solar PV Vehicle
    • Authors: M.B. Said-Romdhane, S. Skander-Mustapha, I. Slama-Belkhodja
    • Conference: 2021 4th International Symposium on Advanced Electrical and Communication …
    • Year: 2021
    • Citations: 7
  • Systematic Design Method for PI Controller with Virtual Resistor-Based Active Damping of LCL Filter
    • Authors: M.B. Saïd-Romdhane, M.W. Naouar, I. Slama-Belkhodja
    • Journal: Global Energy Interconnection
    • Volume: 1
    • Issue: 3
    • Pages: 319-329
    • Year: 2018
    • Citations: 7
  • Adaptive Deadbeat Predictive Control for PMSM-Based Solar-Powered Electric Vehicles with Enhanced Stator Resistance Compensation
    • Authors: M.B. Said-Romdhane, S. Skander-Mustapha, R. Belhassen
    • Journal: Science and Technology for Energy Transition
    • Volume: 78
    • Pages: 35
    • Year: 2023
    • Citations: 4
  • Indirect Sliding Mode Power Control Associated with Virtual-Resistor-Based Active Damping Method for LLCL-Filter-Based Grid-Connected Converters
    • Authors: M.B. Saïd-Romdhane, M.W. Naouar, I. Slama-Belkhodja, E. Monmasson
    • Journal: International Journal of Renewable Energy Research
    • Volume: 7
    • Issue: 3
    • Pages: 1155-1165
    • Year: 2017
    • Citations: 4
  • Enhanced Real-Time Impedance Emulation for Microgrid Equipment Testing and Applications
    • Authors: I.S.B. M. Ben Said-Romdhane, S. Skander-Mustapha
    • Conference: International Renewable Energy Congress
    • Year: 2019
    • Citations: 2

Conclusion

The individual is a strong candidate for the Best Researcher Award, with a robust educational foundation, impressive research contributions, a commendable publication record, and significant professional engagement. Their focus on sustainable solutions in electrical engineering aligns well with contemporary challenges, making their work highly relevant. By addressing areas for improvement, such as enhancing collaboration and visibility, they could further elevate their impact in the field. Overall, their combination of expertise, innovation, and commitment positions them as a leader worthy of this esteemed recognition.