Huajie Luo | Functional materials | Best Researcher Award

Assoc. Prof. Dr Huajie Luo | Functional materials | Best Researcher Award

Scientific researcher at University of science and technology Beijing, China

👨‍🔬 Huajie Luo (b. 1991, Beijing) is an Associate Professor at the University of Science and Technology Beijing (USTB). He specializes in materials science, particularly in the design and performance regulation of ferroelectric ceramics and thin films. His work bridges atomic structures with macroscopic properties like energy storage and electrostrain. Luo has published extensively in top-tier journals and holds multiple patents. He is known for applying advanced techniques like synchrotron XRD and neutron diffraction to study crystal structures. 🌍📚

Pofile

scholar

Education🎓

Huajie Luo earned a Master’s and Ph.D. in Physical Chemistry from the University of Science and Technology Beijing (USTB), where he also completed his postdoctoral research. His doctoral research focused on ferroelectric materials and structure-property relationships. His expertise spans from theoretical modeling to experimental synthesis. 🌟

Experience💼

Luo is currently an Associate Professor at USTB (since 2023) and was a postdoctoral researcher at USTB’s Department of Physical Chemistry (2022-2023). He has participated in significant national research projects and supervised multiple funded initiatives. His broad expertise includes advanced material characterization and design for high-performance devices. 🔬⚙️

Awards and Honors🏅 

Luo has received numerous accolades, including selection for the Postdoctoral Innovative Talent Program and the 2024 Outstanding Postdoctoral Award from USTB. He also earned the 2024 Wiley China High Contribution Author Award and serves on the Youth Editorial Board of Microstructures. 🏆📑

Research Focus🔬

Luo’s research focuses on the design and performance of ferroelectric ceramics and thin films, particularly their macroscopic properties such as electrostrain and energy storage. He uses advanced techniques like synchrotron XRD and neutron diffraction for structural analysis. His work aims to enhance energy storage efficiency and piezoelectric performance. ⚡🧪

Publications

“Chemical design of Pb-free relaxors for giant capacitive energy storage”
Authors: H. Liu, Z. Sun, J. Zhang, et al.
Journal of the American Chemical Society, 145 (21), 11764-11772, 2023

Focuses on the chemical design of lead-free relaxors for large capacitive energy storage.

“Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition”
Authors: Z. Sun, J. Zhang, H. Luo, et al.
Journal of the American Chemical Society, 145 (11), 6194-6202, 2023

Explores the capacitive energy storage performance in Pb-free relaxors with a simplified chemical structure.

“Achieving giant electrostrain of above 1% in (Bi,Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition”
Authors: H. Luo, H. Liu, H. Huang, et al.
Science Advances, 9 (5), eade7078, 2023

Focuses on achieving large electrostrain in (Bi,Na)TiO3-based piezoelectrics with oxygen-defect composition.

“Simultaneously enhancing piezoelectric performance and thermal depolarization in lead-free (Bi, Na) TiO3-BaTiO3 via introducing oxygen-defect perovskites”
Authors: H. Luo, H. Liu, S. Deng, et al.
Acta Materialia, 208, 116711, 2021

Investigates the enhancement of piezoelectric and thermal depolarization properties in (Bi, Na) TiO3-BaTiO3 ceramics.

“Local chemical clustering enabled ultrahigh capacitive energy storage in Pb-free relaxors”
Authors: H. Liu, Z. Sun, J. Zhang, et al.
Journal of the American Chemical Society, 145 (35), 19396-19404, 2023

Highlights the role of local chemical clustering in enhancing energy storage performance in Pb-free relaxors.

Conclusion

In conclusion, Huajie Luo exemplifies the qualities sought after in a Best Researcher Award recipient—exceptional academic productivity, innovative research, and a clear impact on the scientific community. His continued success in both academic and industrial collaborations will likely yield even more groundbreaking results, making him a strong contender for this prestigious award.

Mr. Ismail ELABBASSI | Applied physics and engineering sciences | Best Researcher Award | 3233

Mr.  Moulay Ismail University, Morocco

Elabbassi Ismail is a Doctoral student and Professor in Physical Sciences and Chemistry at the Faculty of Sciences and Technology, Errachidia, Morocco. With a Master’s degree in Solar Technologies and Sustainable Development, he is currently pursuing a Ph.D. in Science and Technology. His research focuses on hybrid storage systems, energy management strategies, microgrid stability, green hydrogen, fuel cell technologies, artificial intelligence, and IoT. Elabbassi has extensive teaching experience and has presented at international conferences. He is proficient in MATLAB/SIMULINK, AutoCAD, and various energy modeling tools. His diverse expertise spans academic research, energy systems, and technical training.

Professional Profiles:

Elabbassi Ismail: Doctorant

Profil Elabbassi Ismail est doctorant et professeur en sciences physiques et chimiques à la Faculté des Sciences et Techniques d’Errachidia, Maroc. Titulaire d’un Master en Technologies Solaires et Développement Durable de l’Université Moulay Ismail de Meknès, il prépare actuellement un doctorat en sciences et techniques. Ses recherches portent sur la modélisation des systèmes de stockage hybrides, la gestion de l’énergie, la stabilité des micro-réseaux, l’hydrogène vert, les technologies de véhicules à pile à hydrogène, l’intelligence artificielle et l’internet des objets. 🌍🔬

Compétences

Communication : Écriture en français et en anglais 📝Outils : MATLAB/SIMULINK, AutoCAD, Caneco BT, Rhapsodie, PVsys, Trnsys, Méteonorm ⚙️Enseignement : Cours, travaux pratiques, et dirigés 📚Modélisation et Automatisation : Projets en énergie photovoltaïque, Arduino 🤖Rédaction Scientifique : Articles, rapportsCentres d’IntérêtSport 🏅Lecture de la littérature scientifique 📖Enseignement 👨‍🏫Voyage ✈️

Expérience Professionnelle

Conférences :IEEE International Conference on Circuit, Systems and Communication, 2024 📊International Conference on Artificial Intelligence in Cybersecurity and Sustainability, 2024 🤖International Conference on Electrical Systems & Automation, 2024 🔋International Conference on Artificial Intelligence and Smart Environment, 2022 🌟Enseignement :Cours de circuits électriques et électroniques, thermodynamique, algorithmique 💡

Evaluation for Researcher Award

Strengths for the Award

  1. Diverse Research Focus: Elabbassi Ismail has a wide range of research interests, including hybrid storage systems, energy management strategies, green hydrogen, fuel cell technologies, and the integration of AI and IoT. This breadth of focus demonstrates a comprehensive understanding of contemporary issues in applied physics and engineering sciences.
  2. Relevant Publications and Conferences: Ismail’s recent participation in high-profile conferences and contributions to scholarly papers reflect a commitment to advancing knowledge in his field. His presentations on topics such as neural networks for power management, machine learning for energy storage, and advanced fault detection showcase his expertise and active engagement in cutting-edge research.
  3. Advanced Technical Skills: His proficiency in tools such as MATLAB/SIMULINK, AutoCAD, and various energy modeling software highlights his technical capabilities. This skill set is crucial for developing and implementing innovative solutions in applied physics and engineering.
  4. Teaching and Mentorship: Ismail’s experience as a professor and involvement in teaching practical modules demonstrate his dedication to education and mentoring. His ability to convey complex concepts and guide students and projects adds significant value to his research profile.
  5. Professional Training and Certifications: His continued education through various training programs in MATLAB, Python, and other relevant areas shows a commitment to staying updated with the latest tools and techniques in his field.

Areas for Improvement

  1. Publication Impact: While Ismail has presented at several conferences and contributed to various papers, there is a need for more high-impact journal publications to further establish his research influence and reach a broader audience.
  2. Interdisciplinary Collaboration: Expanding collaborations with researchers from different disciplines could enhance the scope and impact of his research. Engaging with experts in complementary fields might lead to novel insights and more comprehensive solutions.
  3. Research Visibility: Increasing the visibility of his research through open-access publications or broader dissemination of findings could help in gaining wider recognition and citations.
  4. Project Management: Strengthening skills in project management and leadership could help in effectively managing larger research projects and securing funding for innovative research initiatives.

 

✍️Publications Top Note :

Evaluating and Comparing Machine Learning Approaches for Effective Decision Making in Renewable Microgrid Systems
Authors: Elabbassi, I., Khala, M., Elyanboiy, N., Eloutassi, O., El Hassouani, Y.
Journal: Results in Engineering, 2024, 21, 101888
Abstract: This study evaluates and compares various machine learning techniques for decision-making in renewable microgrid systems.
Citations: 5

Enhancing Surface Defect Detection in Solar Panels with AI-Driven VGG Models
Authors: Yanboiy, N.E., Khala, M., Elabbassi, I., Hassouani, Y.E., Messaoudi, C.
Journal: Data and Metadata, 2023, 2, 81
Abstract: The article discusses improvements in detecting surface defects in solar panels using VGG models driven by artificial intelligence.
Citations: 1

Conference Papers:

Neural Network for FCEVs and RM Power Management using V2G Technology
Authors: Elabbassi, I., Khala, M., El Yanboiy, N., Eloutassi, O., El Hassouani, Y.
Conference: International Conference on Circuit, Systems and Communication (ICCSC), 2024
Abstract: This paper explores the use of neural networks for managing power in Fuel Cell Electric Vehicles (FCEVs) and Renewable Microgrid (RM) systems using Vehicle-to-Grid (V2G) technology.
Citations: 0

Improving Solar Energy Monitoring: Advanced Deep Learning Predictive Model for Photovoltaic Power Generation
Authors: Khala, M., El Yanboiy, N., Elabbassi, I., El Hassouani, Y., Messaoudi, C.
Conference: International Conference on Circuit, Systems and Communication (ICCSC), 2024
Abstract: This conference paper presents an advanced deep learning model for predicting photovoltaic power generation.
Citations: 0

Advanced Intelligent Fault Detection for Solar Panels: Incorporation of Dust Coverage Ratio Calculation
Authors: Elyanboiy, N., Eloutassi, O., Khala, M., El Hassouani, Y., Messaoudi, C.
Conference: 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2024
Abstract: The paper details a method for fault detection in solar panels by incorporating dust coverage ratio calculations.
Citations: 0

Comparative Study of Machine Learning for Managing EV Energy Storage with Battery-Hydrogen Tank
Authors: Elabbassi, I., Elyanboiy, N., Khala, M., Eloutassi, O., Messaoudi, C.
Conference: Advances in Science, Technology and Innovation, 2024, pp. 215–221
Abstract: This paper provides a comparative study of machine learning techniques for managing energy storage in electric vehicles with battery-hydrogen tank systems.
Citations: 0

Adaptive Neural Fuzzy Inference System (ANFIS) in a Grid Connected-Fuel Cell-Electrolyser-Solar PV-Battery-Super Capacitor Energy Storage System Management
Authors: Elabbassi, I., Elyanboiy, N., Khala, M., Layti, M.B.M., Messaoudi, C.
Conference: Lecture Notes in Networks and Systems, 2023, 635 LNNS, pp. 138–143
Abstract: This conference paper discusses the use of Adaptive Neural Fuzzy Inference Systems (ANFIS) for managing energy storage systems that combine fuel cells, electrolyzers, solar PV, batteries, and super capacitors.
Citations: 2

IoT-Based Intelligent System of Real-Time Data Acquisition and Transmission for Solar Photovoltaic Features
Authors: Elyanboiy, N., Khala, M., Elabbassi, I., Eloutassi, O., Messaoudi, C.
Conference: Lecture Notes in Networks and Systems, 2023, 635 LNNS, pp. 559–565
Abstract: This paper presents an IoT-based intelligent system for real-time data acquisition and transmission related to solar photovoltaic systems.
Citations: 1

Conclusion

Elabbassi Ismail exhibits many strengths that make him a strong candidate for the Researcher Award. His diverse research interests, technical expertise, and dedication to teaching and continuous learning highlight his significant contributions to the fields of applied physics and engineering sciences. Addressing areas for improvement, such as increasing publication impact and expanding interdisciplinary collaborations, could further enhance his profile and influence. Overall, his achievements and ongoing efforts position him well for recognition in this prestigious award.

Prof Dr. Claudio Urrea | automation and control | Best Researcher Award

Prof Dr. Claudio Urrea| autndomation a control | Best Researcher Award

Prof Dr. Claudio, University of Santiago of Chile, Chile

Prof Dr. Claudio Urrea is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Scopus

ORCID

🎓 Educational and Professional Background:

🔍 Post-Doctoral Degree
Research Topic: Diagnostique de Systèmes Tolérants aux Défauts (Diagnosis of Fault-Tolerant Systems). Université d’Aix-Marseille III, Marseilles, France.🎓 Docteur in Automatique et Productique  Laboratoire d’Automatique de Grenoble (LAG), Institut National Polytechnique de Grenoble (INPG), France. Specialization: Automatique et Productique (Automation and Production). Distinction: Très Honorable. PhD in Engineering Sciences  Electrical Engineering Department (DIE), University of Santiago of Chile (USACh). Specialization: Automation. Distinction: Approved with highest honors.  Master in Engineering Sciences DIE, USACh, Chile. Specialization: Electrical Engineering.

👨‍🏫 Working Experience:

Academic Advisor
University of Santiago of Chile, representative of the Full Professors. Postgraduate Vice-Chancellor Vice-Rectory of Postgraduate, University of Santiago of Chile. President of the Postgraduation Superior Council University of Santiago of Chile. President of the Assessment Commission for Postgraduate Programs University of Santiago of Chile. President of the Academic Performance Evaluation and Qualification Committee Electrical Engineering Department, University of Santiago of Chile.

📖 Publications  Top Note :

Modeling, design and control of a 4-arm delta parallel manipulator employing type-1 and interval type-2 fuzzy logic-based techniques for precision applications

paper publication in

A Multimodal Fusion System for Object Identification in Point Clouds with Density and Coverage Differences

paper publication in

Fast Rock Detection in Visually Contaminated Mining Environments Using Machine Learning and Deep Learning Techniques

paper publication in

A Novel Robotic Controller Using Neural Engineering Framework-Based Spiking Neural Networks

paper publication in

paper publication in

Improving Exoskeleton Functionality: Design and Comparative Evaluation of Control Techniques for Pneumatic Artificial Muscle Actuators in Lower Limb Rehabilitation and Work Tasks

paper publication in

Fuzzy Control Strategies Development for a 3-DoF Robotic Manipulator in Trajectory Tracking

paper publication in

Model of the response time of the variable-frequency drive with Padé approximant to test the control velocity of a conveyor belt

paper publication in

Model of the response time of the variable-frequency drive with Padé approximant to test the control velocity of a conveyor belt

paper publication in

Design, Simulation, Implementation, and Comparison of Advanced Control Strategies Applied to a 6-DoF Planar Robot

paper publication in