Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof. Dr. Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof at Kyrgyz State Technical University, Kyrgyzstan

🎓Prof. Dr. Ryspek Usubamatov, an esteemed academic and innovator, has contributed immensely to mechanical, industrial, and manufacturing engineering. 🌍 Born in Kyrgyzstan, he earned his Ph.D. at Bauman Moscow State Technical University and holds over 500 publications, 61 patents, and 8 books. 📚 He has led research projects globally, including in the USA, UK, and Malaysia, and mentored numerous students. 🌟 His groundbreaking work in gyroscopic theory and high-efficiency turbines reflects his dedication to sustainable innovation.

Publication Profile

orcid

Education🎓

1994-96: Certificate in English Literature, KSTU  1994: University Administration, Kansas University, USA.  1993: Doctor of Technical Sciences, National Academy of Sciences, Kyrgyzstan. 1968-72: Ph.D., MSTU 1960-66: Professional Engineer Certificate, Mechanical Engineering, MSTU.  Multiple certifications from workshops globally in engineering, composite materials, web publishing, and business coaching.

Experience 👨‍🏫

Professor at UniMAP and UPM (2002-2016).  Professor of Automation and Production, KSTU (1972-1992).  Rector of KSTU (1992-1999).  Director, International University of Kyrgyzstan (1999-2002). Expert consultant for UNESCO and INTAS, promoting global scientific collaboration. Machine Tool Engineer, Bishkek Engineering Plant (1966-1968).

Awards and Honors🏅

State Medal for Valiant Labour, Kyrgyzstan (1982). Government Medal for Excellence in Education, Kyrgyzstan (1993) Bronze Medal, ITEX, Malaysia (2009). Silver Medal, ITEX, Malaysia (2014). Order of Merit, WIAF, Korea (2012). Fellowships and memberships in AAAS, UAMAE, and global academies.  Editorial board member of multiple scientific journals.

Research Focus⚙️

Productivity Theory for Industrial Engineering. Gyroscopic effects for rotating objects. High-efficiency turbine designs. Advanced machining processes and CNC. Automation, robotics, and material handling. Innovations in vane-type turbines and combustion engines  Dynamic system design and kinematics of machines. Econometrics and engineering collaboration projects.

Publications 📖

ptimization of Machining for the Maximal Productivity Rate of the Drilling Operations
Journal: International Journal of Mathematics for Industry
Published: August 2024 | DOI: 10.1142/S2661335224500230
Contributors: Ryspek Usubamatov, Abdusamad Abdiraimov

Maximal Productivity Rate of Threading Machine Operations
Journal: International Journal of Mathematics for Industry
Published: July 2024 | DOI: 10.1142/S2661335224500199
Contributors: Ryspek Usubamatov, Darina Kurganova, Sarken Kapayeva

Optimization of Face Milling Operations by Maximal Productivity Rate Criterion
Journal: Production Engineering
Published: June 2024 | DOI: 10.1007/s11740-023-01249-9
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov, Gabdyssalyk Riza

Gyroscopic Torques Generated by a Spinning Ring Torus
Journal: Advances in Mathematical Physics
Published: January 2024 | DOI: 10.1155/admp/5594607
Contributors: Ryspek Usubamatov, John Clayton

Theory of Gyroscopic Effects for Rotating Objects
Book: Springer
Published: 2022 | DOI: 10.1007/978-3-030-99213-2

Optimization of Machining by the Milling Cutter
Preprint: December 2022 | DOI: 10.21203/rs.3.rs-2333647/v1
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov

Inertial Forces and Torques Acting on a Spinning Annulus
Journal: Advances in Mathematical Physics
Published: September 2022 | DOI: 10.1155/2022/3371936
Contributors: Ryspek Usubamatov, Sarken Kapayeva, Zine El Abiddine Fellah

Erratum: Physics of Gyroscope Nutation
Journal: AIP Advances
Published: March 2021 | DOI: 10.1063/5.0040660

Physics of Gyroscope Nutation
Journal: AIP Advances
Published: October 2019 | DOI: 10.1063/1.5099647

Productivity Theory for Industrial Engineering
Book: Taylor and Francis, London
Published: July 2018

Conclusion

This candidate is an exceptional contender for the Research for Outstanding Scientist Award, with a remarkable track record of academic excellence, professional leadership, and contributions to mechanical engineering and manufacturing technologies. Their multidisciplinary expertise, extensive publication record, and international recognition make them a strong candidate. Enhancing focus on emerging technologies and sustainability-related applications would further strengthen their candidacy and relevance for this prestigious award.

Bingcheng Yi | Bioinspired Functional Surfaces | Best Researcher Award

Mr. Bingcheng Yi | Bioinspired Functional Surfaces  | Best Researcher Award

Associated professor at University of Health and Rehabilitation Sciences, china 

Bingcheng Yi is an Associated Professor at the University of Health and Rehabilitation Sciences, China. With expertise in biomaterials and tissue engineering, Dr. Yi has made significant contributions to the development of biomimetic materials for tissue regeneration. His research focuses on vascular tissue engineering, modification of biomaterials, and cell-matrix interactions [1].

Publication Profile

scopus

Education 🎓

PhD in Biomaterials, Donghua University, 2020 👩‍🎓Master in Biochemical Engineering, Donghua University, 2016 🧪Bachelor in Food Quality and Safety, Hainan University, 2013 🍽️

Experience 💼

2022–Present: Associate Professor, University of Health and Rehabilitation Sciences 🏫2020–2022: Postdoc, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University 🏥2016–2020: Research Assistant, Donghua University 🔬

Awards and Honors 🏅🏆

Dr. Zhang has received numerous awards, including the National Scholarship for Graduate Students (2019), Best Research Presentation Award at the International Biomaterials Conference (2020), and an Excellence in Innovation Award from the University of Health and Rehabilitation Sciences (2022).

Research Focus 🔬

His research focuses on vascular tissue engineering, developing advanced biomaterials like nanofiber hydrogels to regulate cell behaviors, mechanisms of cell-matrix interactions in tissue remodeling, and designing biomimetic materials for effective tissue regeneration. 💡

Publications 📖

Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair
Authors: Shao, T., Yan, M., Liu, R., Yi, B., Zhou, Q.
Journal: Carbohydrate Polymers
Year: 2025, Volume 352, Article 123150
Summary: The article focuses on a bacterial cellulose-based scaffold modified with anti-CD29 antibody for selectively capturing urine-derived stem cells aimed at bladder repair.

Fucoidan-derived carbon dots as nanopenetrants of blood-brain barrier for Parkinson’s disease treatment
Authors: Han, M., Yi, B., Song, R., Shen, X., Zhou, Q.
Journal: Journal of Colloid and Interface Science
Year: 2025, Volume 680, pp. 516–527
Summary: This study investigates fucoidan-derived carbon dots as nanocarriers for penetrating the blood-brain barrier to treat Parkinson’s disease.

ADSCC-CM-Induced Keratin Hydrogel-Based Bioactive Microneedle Patch Containing Triamcinolone Acetonide for the Treatment of Pathological Scar
Authors: Li, C., Yi, B., Xu, Q., Zhou, Q., Wang, Z.
Journal: Advanced Functional Materials
Year: 2024, Volume 34(46), Article 2400457
Summary: This research presents a keratin hydrogel-based microneedle patch, induced by ADSCC-conditioned media, for the treatment of pathological scars.

Mechanical loading on cell-free polymer composite scaffold enhances in situ regeneration of fully functional Achilles tendon in a rabbit model
Authors: Wang, W., Lin, X., Tu, T., Zhang, P., Liu, W.
Journal: Biomaterials Advances
Year: 2024, Volume 163, Article 213950
Summary: The article discusses the effects of mechanical loading on a cell-free polymer scaffold, promoting tendon regeneration in a rabbit model.

Piezoelectrically-enhanced composite membranes mimicking the tendinous electrical microenvironment for advanced tendon repair
Authors: Wang, W., Wang, P., Li, Q., Liu, W., Wang, X.
Journal: Nano Today
Year: 2024, Volume 57, Article 102381
Summary: This study explores the use of piezoelectric composite membranes for tendon repair by mimicking the electrical microenvironment.

Ecofriendly and high-performance flexible pressure sensor derived from natural plant materials for intelligent audible and silent speech recognition
Authors: Zheng, X., Yi, B., Zhou, Q., Li, Y., Li, Y.
Journal: Nano Energy
Year: 2024, Volume 126, Article 109701
Summary: The article presents a flexible pressure sensor made from natural plant materials, intended for speech recognition applications.

Sulfated Chitosan-Modified CuS Nanocluster: A Versatile Nanoformulation for Simultaneous Antibacterial and Bone Regenerative Therapy in Periodontitis
Authors: Chen, X., Huang, N., Wang, D., Yuan, C., Zhou, Q.
Journal: ACS Nano
Year: 2024, Volume 18(22), pp. 14312–14326
Summary: This study introduces a sulfated chitosan-modified CuS nanocluster for combined antibacterial and bone regeneration therapy in periodontitis.

Polylysine-derived carbon quantum dots modulate T lymphocyte responses for periodontitis treatment
Authors: Deng, X., Yi, B., Guo, F., Yuan, C., Zhou, Q.
Journal: Materials and Design
Year: 2024, Volume 241, Article 112975
Summary: The research highlights how polylysine-derived carbon quantum dots can modulate T lymphocyte responses to treat periodontitis.

Physiological cyclic stretching potentiates the cell–cell junctions in vascular endothelial layer formed on aligned fiber substrate
Authors: Shi, Y., Li, D., Yi, B., Xu, T., Zhang, Y.
Journal: Biomaterials Advances
Year: 2024, Volume 157, Article 213751
Summary: This paper explores how cyclic stretching can enhance cell–cell junctions in a vascular endothelial layer on an aligned fiber substrate.

The Combination of Aligned PDA-Fe@PLCL Conduit with Aligned GelMA Hydrogel Promotes Peripheral Nerve Regeneration
Authors: Wang, P., You, J., Liu, G., Yi, B., Huang, Q.
Journal: Advanced Healthcare Materials
Year: 2024 (in press)
Summary: This research proposes a combined conduit and hydrogel approach to promote peripheral nerve regeneration.

Conclusion

The candidate is highly deserving of the Best Researcher Award due to their solid academic background, exceptional research contributions in biomaterials, and the promising potential for their findings to shape the future of regenerative medicine and tissue engineering. While areas like interdisciplinary collaboration, public engagement, and commercialization could be strengthened, their work shows significant potential for continued innovation. Given their drive and track record of excellence, they are poised to make enduring contributions to both academic and clinical fields.