Chuan Yang | Civil Engineering | Best Researcher Award

Mr. Chuan Yang | Civil Engineering | Best Researcher Award

student at College of Civil Engineering,Huaqiao University,Xiamen,China 

🎓 A driven civil engineering student with a passion for both academics and sports, currently pursuing a master’s degree in Structural Engineering at Huaqiao University. 🏗️ Having excelled in various leadership roles, this individual has a strong background in structural design, computational methods, and civil engineering management. 🏅 With notable achievements in sports, including multiple championships in basketball, they also bring a balanced approach to education and extracurricular activities. 🌍 Dedicated to contributing to the growth of the civil engineering field, with strong communication and teamwork skills. 🚀

Publication Profile

scopus

Education🎓 

Undergraduate in Civil Engineering at Changsha University of Science and Technology (2018-2022), GPA: 3.4/4, Ranked 7th/72 🏗️ | Master’s in Structural Engineering at Huaqiao University (2022-present), with courses in computational methods, finite element methods, and advanced concrete. 📚 | Major courses: Engineering Economics, Structural Design Principles, and Management Systems. 💡

Experience🛠️

China Construction Fifth Engineering Group Co., Ltd. (2024) – Contributed to the Changsha Huanghua Airport reconstruction project as a communication and supervision specialist, ensuring progress and meeting customer needs. 📈 | Led construction status monitoring and materials integration, receiving high praise for performance. 👷‍♀️ | Actively participated in team leadership roles in physical education and mental health committees. 🏀

Awards and Honors🏆

Awards: Jiuxiang Scholarship (Learning Progress & Excellent Sports Team) 🏅 | Second Prize Scholarship & Advanced Individual in Cultural and Sports Activities 🥇 | Championship Titles: Polytechnic Cup Basketball (Changsha University) 🏀 | Huaqiao University Hua University Cup & Huayan Cup Basketball Champion 🏆 | Final MVP in Huayan Cup Basketball 2022 🏅 | Recognized for mental health education and leadership. 🎓

Research Focus🔬

Specializing in structural engineering, with a focus on finite element methods, elastic-plastic mechanics, and advanced concrete structures. 🏗️ | Aiming to enhance construction efficiency through innovative design methods and material optimization. 📚 | Active in applying computational techniques to solve real-world engineering challenges. 💻

Publications 📖

“Optical Transformation Characteristic of Silicone Resin Matrix Composite Coatings Under High-Energy Laser Ablation”

Authors: Yang, C., Wen, M., Gao, J., Chen, G., Ma, C.

Published in: Ceramics International, 2024, Volume 50, Issue 19, Pages 36088–36098.

“Stressing State Analysis of Unbonded Prestressed Concrete Simply Supported Slabs in Fire”

Authors: Yang, C., Dong, Y., Qi, J., Duan, J., Zhang, D.

Published in: Structural Concrete, 2024.

 

Conclusion

The candidate’s academic achievements, research contributions, and practical experience in civil engineering make them a strong contender for the Best Researcher Award. Their ability to balance rigorous academic study with leadership roles and involvement in real-world projects demonstrates not only technical expertise but also a well-rounded skill set. By addressing areas for improvement, such as expanding research diversity and enhancing language proficiency, the candidate can further solidify their position as a leading researcher in the field of civil and structural engineering. The combination of academic dedication, innovative contributions, and leadership makes them highly deserving of this prestigious recognition.

Junhong Xu | structural control | Best Researcher Award

Assoc. Prof. Dr Junhong Xu | structural control | Best Researcher Award

 Assoc. Prof. Dr at Nanjing forestry university, China

Dr. Xu Junhong is an Associate Professor and Master Supervisor at the School of Civil Engineering, Nanjing Forestry University (2017–present). He holds a Ph.D. in Civil Engineering from Southeast University (2015) and has expertise in structural engineering, mechanical metamaterials, and vibration control. He has led numerous research projects and supervised graduate students. His academic contributions span energy dissipation technologies, additive manufacturing, and structural optimization.

Publication Profile

scopus

Education: 🎓

Ph.D. in Civil Engineering, Southeast University, 2015 M.S. in Geotechnical Engineering, Hohai University, 2010 B.A. in Civil Engineering, North China University of Water Resources and Electric Power, 2007

Experience: 🌟

Associate Professor, Nanjing Forestry University, School of Civil Engineering (2017–present) Lecturer, Hohai University (2010–2017) Extensive participation in research projects related to structural vibration control and nanocomposites

Awards and Honors: 🏅

National Natural Science Foundation of China Project Award (2025) Jiangsu Natural Science Foundation Award for Research on Viscoelastic Damping (2018–2021) Multiple recognitions for contributions to disaster prevention and engineering projects.

Research Focus: 🔬

Dr. Xu’s research interests include mechanical metamaterials, additive manufacturing, high-performance nanocomposites, and viscoelastic damping devices. His focus is on structural vibration control, particularly damping systems for steel, timber, and concrete structures. He also explores disaster prevention, mitigation, and high damping materials for energy dissipation. His work has applications in both building structures and civil engineering technologies.

Publications 📖

Dynamic performance testing of CB-990 reinforced fluororubber joint dampers (CFJD) — This study provides simulation analysis of these innovative materials for improving structural damping under dynamic loads.

Pore pressure study of calcareous sand — Examines the effects of complex loadings on calcareous sand, important for understanding soil behavior in seismic conditions.

Seismic performance of nanometakaolin-reinforced fluororubber sector dampers (NFSD) — Investigates the seismic resistance properties of these dampers, offering solutions for more resilient infrastructure.

Energy dissipation in 3D-PAM type Right-Angle Viscoelastic Dampers (RVD) — A key study on vibration control and energy dissipation, particularly for polyurethane damping materials.

Conclusion:

Based on the candidate’s impressive academic achievements, active involvement in innovative research, and contributions to improving structural safety and resilience, they are a strong contender for the Research for Best Researcher Award. Their work in the field of vibration control, damping systems, and disaster mitigation is not only timely but also impactful, addressing urgent needs in civil engineering and structural safety. If the candidate can further expand their influence through international publications and industry collaborations, their potential for making significant contributions to the field will only grow.

Yasmeen Obaidat | Structural eng | Best Researcher Award

Prof. Yasmeen Obaidat | Structural eng | Best Researcher Award

Professor at ordan university of science and technology, Jordan

Associate Professor of Civil Engineering at Jordan University of Science & Technology (JUST). 📚 Earned a Ph.D. from Lund University, Sweden (2011), and MSc/BSc from JUST. 🏗️ Expert in structural retrofitting, nonlinear finite element modeling, and AI applications in civil engineering. 🌍 Active researcher with 40+ publications and contributor to academic growth at JUST and Yarmouk University. 🎓 Dedicated mentor, supervisor, and conference participant.

 

Publication Profile

scholar

Education🎓

Ph.D.: Civil Engineering, Structural Mechanics, Lund University, Sweden (2011). Dissertation: Structural retrofitting of concrete beams using FRP Licentiate: Structural Mechanics, Lund University, Sweden (2009). Thesis: Retrofitting reinforced concrete beams with CFRP. M.Sc.: Structural Engineering, JUST, Jordan (2007). Thesis: Retrofitting RC beams with composite laminates. B.Sc.: Structural Engineering, JUST, Jordan (2004).

Experience🧑‍🏫

Professor, Civil Engineering, JUST (2023-present). Associate Professor, Civil Engineering, JUST (2012-2019). Head of Civil Engineering Department, Yarmouk University (2012-2015). Assistant Professor, Civil Engineering, JUST and Yarmouk University. Established civil engineering labs and supervised 50+ undergrad projects.

Awards and Honors🏆

Member of Undergraduate Projects Committee, Jordanian Engineers Association (2019-present).  Instrumental in academic and research partnerships nationally and internationally.  Established civil engineering labs at Yarmouk University.  Significant contributions to faculty development at JUST and Yarmouk University.

Research Focus🔍 

Structural retrofitting and strengthening with FRP materials.  Nonlinear finite element modeling in civil engineering applications. AI integration in structural engineering solutions  Climatic design for sustainable civil engineering practices.  Published 40+ peer-reviewed articles and supervised MSc/PhD students.

Publication  Top Notes

“The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM”
📄 Composite Structures (2010), 92(6), pp. 1391–1398.
👀 Cited 369 times, this study investigates finite element modeling (FEM) techniques for retrofitted RC beams using CFRP.

“Retrofitting of reinforced concrete beams using composite laminates”
📄 Construction and Building Materials (2011), 25(2), pp. 591–597.
🔗 Cited 202 times, this article explores composite laminate retrofitting for RC beams, focusing on structural performance.

“Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading”
📄 Construction and Building Materials (2019), 198, pp. 313–322.
🌐 Cited 72 times, it examines innovative CFRP configurations for seismic retrofitting of RC joints.

“Evaluation of parameters of bond action between FRP and concrete”
📄 Journal of Composites for Construction (2013), 17(5), pp. 626–635.
📊 Cited 62 times, focuses on critical bond parameters affecting FRP-concrete interaction.

“Effect of olive waste (Husk) on behavior of cement paste”
📄 Case Studies in Construction Materials (2016), 5, pp. 19–25.
🌱 Cited 58 times, investigates the sustainable use of olive waste in cement paste formulations.

“Structural retrofitting of concrete beams using FRP-debonding issues”
📄 Doctoral Dissertation (2011).
📗 Cited 54 times, addresses challenges of FRP debonding in structural retrofitting applications.

“A new technique for repairing reinforced concrete columns”
📄 Journal of Building Engineering (2020), 30, 101256.
🏗️ Cited 44 times, proposes an innovative column repair method using CFRP.

“Non-linear finite-element investigation of the parameters affecting externally-bonded FRP flexural-strengthened RC beams”
📄 Results in Engineering (2020), 8, 100168.
🖥️ Cited 42 times, presents a FEM analysis for flexural strengthening of RC beams.

“New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate”
📄 Construction and Building Materials (2020), 263, 120246.
🚧 Cited 40 times, this work details advanced anchorage solutions for NSM-CFRP systems.

“Performance of RC beam strengthened with NSM-CFRP strip under pure torsion: Experimental and numerical study”
📄 International Journal of Civil Engineering (2020), 18, pp. 585–593.
🔄 Cited 38 times, investigates the torsional strengthening of RC beams using NSM-CFRP strips.

“Shear strengthening of RC beams using near-surface mounted carbon fibre-reinforced polymers”
📄 Australian Journal of Structural Engineering (2019), 20(1), pp. 54–62.
✂️ Cited 38 times, explores NSM-CFRP applications for shear strength enhancement.

“Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programming and artificial neural network”
📄 Journal of Civil Engineering and Management (2020), 26(2), pp. 189–199.
🔥 Cited 27 times, uses AI to predict structural performance under heat stress.

“Case study on production of self-compacting concrete using white cement by-pass dust”
📄 Case Studies in Construction Materials (2018), 9, e00190.
🔍 Cited 27 times, highlights sustainable concrete production methods.

“Effect of aggregate size on the bond behavior between carbon fiber–reinforced polymer sheets and concrete”
📄 Journal of Materials in Civil Engineering (2019), 31(12), 04019295.
📐 Cited 24 times, examines how aggregate size impacts CFRP-concrete bond behavior.

“Effect of elevated temperature on the bond behavior between NSM-CFRP strips and recycled aggregate concrete”
📄 Construction and Building Materials (2020), 251, 118970.
🌡️ Cited 22 times, investigates bond integrity under heat exposure.

“Behavior of NSM CFRP reinforced concrete columns: Experimental and analytical work”
📄 Case Studies in Construction Materials (2021), 15, e00589.
🏗️ Cited 21 times, combines experimental and analytical approaches to column strengthening.

“A nonlinear finite element model for shear deficient heat-damaged concrete beams repaired using NSM CFRP strips”
📄 Construction and Building Materials (2018), 170, pp. 314–325.
🔨 Cited 21 times, provides a FEM-based solution for repairing heat-damaged beams.

“Repair of heat-damaged SCC cantilever beams using SNSM CFRP strips”
📄 Structures (2020), 24, pp. 151–162.
🔧 Cited 20 times, focuses on repairing SCC beams using advanced CFRP techniques.

“Innovative strengthening schemes of concrete cantilever beams using CFRP sheets: End anchorage effect”
📄 Construction and Building Materials (2018), 190, pp. 1215–1225.
💡 Cited 17 times, analyzes the end anchorage impact in CFRP-strengthened beams.

Conclusion

The candidate demonstrates exceptional qualifications and achievements in structural mechanics, retrofitting techniques, and civil engineering education. Their blend of academic excellence, research productivity, leadership roles, and mentorship makes them a strong contender for the Best Researcher Award. By focusing on enhancing global impact and diversifying research interests, they can further solidify their stature as a leading researcher.

JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Mr. JAEHYUK CHOI | Materials and Structures | Best Researcher Award

Assist Prof Dr at National Korea Maritime and Ocean University, South Korea

Mr. JAEHYUK CHOI is a distinguished professor at Korea Maritime and Ocean University with expertise in mechanical and marine engineering. After earning his Ph.D. from Hokkaido University, Japan, he has contributed significantly to fields like combustion engineering, high-temperature hydrogen production, and space utilization engineering. His professional journey includes a blend of academia, research, and industry advisory roles, including postdoctoral work at the Korea Atomic Energy Research Institute and advisory roles for Korea’s Ministry of Ocean and Fisheries. He has published extensively on air pollution control and hydrogen production modeling, contributing to global research initiatives.

Publication Profile

scopus

Education 🎓

Ph.D. in Mechanical Science (2005) – Hokkaido University, Japan (Advisor: Prof. Osamu Fujita) M.S. in Marine Engineering (2000) – Korea Maritime University, Korea (Advisor: Prof. Seok-Hun Yoon) B.S. in Marine Engineering (1996) – Korea Maritime University, Korea His educational journey has provided him with a robust foundation in mechanical and marine engineering, focused on areas such as combustion, fluid flow, and hydrogen production. The combination of Japanese and Korean maritime expertise enables him to develop cutting-edge models for air pollution control, combustion technologies, and high-temperature electrolysis, contributing to cleaner maritime operations. 🌐🌬️🚢

Experience 👨‍✈️

Naval Officer – 1996-1998 (Navy R.O.T.C 41, Korea) Researcher – 2000-2001 (Korea Maritime University) Research Student – 2001 (Hokkaido University, Japan Postdoctoral Researcher – 2005-2007 (Korea Atomic Energy Research Institute)  BK21 Assistant Professor – 2007-2009 (Seoul National University)  Assistant/Associate/Professor – 2009-present (Korea Maritime and Ocean University) Policy Advisory Council – 2017-2019 (Ministry of Ocean and Fisheries)  Visiting Scholar – 2019-2021 (University of Missouri) Mr. JAEHYUK CHOI has a rich professional background combining military service, academic research, and advisory roles. His international experience includes collaborations in Japan and the United States, broadening his expertise in nuclear hydrogen and marine engineering. 🛠️🌍

Awards and Honors🏆

Minister Citation – Ministry of Ocean and Fisheries (2018) Best Teacher Award – Korea Maritime and Ocean University (2014, 2017) 2000 Outstanding Intellectuals – IBC (2016) Minister Citation – Ministry of Science, ICT, and Future Planning (2015) Certificate – President of KMOU (2013, 2014) Outstanding Paper – Japan Society of Mechanical Engineers (2007 Outstanding Paper – Korean Society of Marine Engineering (2006 Certificate – Korea Atomic Energy Research Institute (2006) Mr. JAEHYUK CHOI has received numerous awards, recognizing his contributions to marine engineering and academia. His dedication to research and teaching is reflected in prestigious ministerial citations and multiple best paper awards from renowned engineering societies. 🏅📚🎖️

Publication  Top Notes

Experimental and numerical studies on performance investigation of a diesel engine converted to run on LPG
Authors: Kuk Kim, J., Lee, W.-J., Ahn, E., Choi, J.-H.
Published in: Energy Conversion and Management, 2024, 321, 119091
Summary: This paper investigates the performance of diesel engines converted to operate on LPG (liquefied petroleum gas). The study combines both experimental and numerical methods to analyze fuel efficiency, emissions, and engine performance.

Review of noise and vibration reduction technologies in marine machinery: Operational insights and engineering experience
Authors: Park, M.-H., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Applied Ocean Research, 2024, 152, 104195
Summary: This review focuses on technologies aimed at reducing noise and vibration in marine machinery. The authors compile operational insights and lessons learned from engineering practices, emphasizing the importance of reducing environmental and human impacts in maritime applications.

Experimental evaluation of the significance of scheduled turbocharger reconditioning on marine diesel engine efficiency and exhaust gas emissions
Authors: Nyongesa, A.J., Park, M.-H., Lee, C.-M., Hur, J.-J., Lee, W.-J.
Published in: Ain Shams Engineering Journal, 2024, 15(8), 102845
Summary: This article presents an experimental study evaluating the impact of scheduled turbocharger reconditioning on the efficiency of marine diesel engines and associated exhaust gas emissions. The findings emphasize the importance of maintenance schedules for optimizing engine performance and reducing emissions.

Effects of natural gas admission location and timing on performance and emissions characteristics of LPDF two-stroke engine at low load
Authors: Nyongesa, A.J., Choi, J.-H., Lee, J.-W., Kim, J.-S., Lee, W.-J.
Published in: Case Studies in Thermal Engineering, 2024, 56, 104241
Summary: This paper investigates the effects of natural gas admission timing and location on the performance and emissions of low-pressure dual-fuel (LPDF) two-stroke engines. The results are crucial for optimizing engine operations under low-load conditions.

Estimation of greenhouse gas emissions from ships registered in South Korea based on activity data using the bottom-up approach
Authors: Yeo, S., Kuk Kim, J., Choi, J.-H., Lee, W.-J.
Published in: Journal of Engineering for the Maritime Environment, 2024
Summary: This study uses a bottom-up approach to estimate greenhouse gas emissions from ships registered in South Korea. The authors focus on activity data, providing a detailed methodology for assessing emissions from maritime transportation.

LPG, Gasoline, and Diesel Engines for Small Marine Vessels: A Comparative Analysis of Eco-Friendliness and Economic Feasibility
Authors: Kim, J.K., Yeo, S., Choi, J.-H., Lee, W.-J.
Published in: Energies, 2024, 17(2), 450
Summary: This article compares LPG, gasoline, and diesel engines for small marine vessels, focusing on their eco-friendliness and economic feasibility. The paper highlights LPG as a potential environmentally friendly alternative to traditional fuels.

Impact of K-H Instability on NO Emissions in N₂O Thermal Decomposition Using Premixed CH₄ Co-Flow Flames and Electric Furnace
Authors: Park, J., Kim, S., Yu, S., Choi, J.-H., Yoon, S.H.
Published in: Energies, 2024, 17(1), 96
Summary: This study examines the impact of Kelvin-Helmholtz (K-H) instability on nitrogen oxide (NO) emissions during nitrous oxide (N₂O) thermal decomposition in premixed methane co-flow flames. The findings contribute to understanding combustion instability’s role in emission characteristics.

Feasibility study on bio-heavy fuel as an alternative for marine fuel
Authors: Kim, J.-S., Choi, J.-H.
Published in: Renewable Energy, 2023, 219, 119543
Summary: This feasibility study explores the potential of bio-heavy fuel as a sustainable alternative to conventional marine fuels. The paper assesses the environmental and economic impacts of using bio-heavy fuel in maritime applications.

Corrigendum: Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9
Summary: The corrigendum addresses errors in a previously published article related to hydrogen mixture ratios and scavenging air temperature’s effects on two-stroke marine engine performance and emissions.

Effects of hydrogen mixture ratio and scavenging air temperature on combustion and emission characteristics of a 2-stroke marine engine
Authors: Pham, V.C., Kim, J.-S., Lee, W.-J., Choi, J.-H.
Published in: Energy Reports, 2023, 9, pp. 195–216

Conclusion

The candidate is highly suitable for the Best Researcher Award due to their comprehensive expertise, significant professional experience, and numerous accolades. Their research has substantial implications for environmental sustainability and technological advancement. By focusing on improving their publication output and fostering industry collaborations, the candidate can further solidify their impact and leadership in their field. Overall, the candidate’s strengths make them an exemplary choice for this prestigious award.

Muhammad Sami Ullah | Civil Engineering | Best Researcher Award

Mr. Muhammad Sami Ullah | Civil Engineering | Best Researcher Award

Student at Southeast University,  China

An accomplished Structural Engineer with 3.5+ years of experience across diverse projects in the U.S., U.K., and China. Specializing in advanced structural design, analysis, and optimization, they have honed their technical skills using software like SAP2000, STAAD Pro, and Tekla Tedds. Their international exposure includes remote work and internships with industry leaders in engineering. Known for attention to detail, problem-solving, and meeting tight deadlines, they excel at delivering safe, efficient, and cost-effective structural solutions. A dynamic engineer committed to driving excellence in both residential and commercial projects.

Publication Profile

orcid

Education  🎓

Master of Science in Civil Engineering (2022–2025), Southeast University, China (83%).  Bachelor of Science in Civil Engineering (2017–2021), The University of Faisalabad, Pakistan (CGPA 3.59/4.00) The Master’s thesis focused on “Load-path and strut-and-tie modeling of multiple-pile caps in bridges,” with notable research contributions published in the Structural Concrete Journal. The Bachelor’s thesis investigated the “Effect of Different Types of Superplasticizer on Properties of Fresh and Hardened Concrete.” Their academic journey blends practical projects with innovative research, culminating in an advanced understanding of structural engineering’s principles and applications.

Experience  🔧

Structural Engineer at Foresight (USA): Designed complex structural systems and analyzed steel elements using SAP2000.  Structural Engineer at Revite (UK): Specialized in advanced steel structure design and trained staff in SAP2000, STAAD Pro, and Tekla Tedds.  AGC (UK): Focused on designing timber structures, including lofts and skylights, ensuring compliance with BS and EC standards.  Internships in China: Contributed to the design of stadium structures, gaining experience with tools like ABAQUS and ANSYS  Previous roles include projects in Pakistan, optimizing material quantities and monitoring on-site construction.

Awards and Honors 🏆

Published research in Structural Concrete Journal and presented a conference paper at GBCESC 2024, China. Achieved an 83% score in the MSc program at Southeast University, China.  Winner of the Eassy Contest for International Students in Jiangsu Province. Recognized in the AutoCAD Competition at UET Faisalabad.  Represented The University of Faisalabad in Badminton tournaments. Participated in research on international students’ perceptions of the Belt and Road Initiative.

Research Focus  🔬

Their research primarily focuses on structural load-path analysis and the development of advanced strut-and-tie models for bridges. They have published work analyzing transverse tensile stresses in multiple-pile caps in Structural Concrete Journal. Ongoing projects include enhancing the design of multi-pile caps for better structural efficiency and sustainability. Additionally, they have contributed to research on the effects of superplasticizers in concrete, optimizing both fresh and hardened concrete properties for construction projects. Their research integrates advanced modeling techniques with practical applications, ensuring high-performance structural designs.

Publication  Top Notes

  • Protection-Enhanced Watermarking Scheme Combined With Non-Linear Systems
    Journal: IEEE Access, 2023
    Contributors: Hira Nazir, Muhammad Sami Ullah, Syed Salman Qadri, Humaira Arshad, Mujtaba Husnain, Abdul Razzaq, Syed Ali Nawaz
    This article introduces a watermarking scheme designed to enhance protection through non-linear systems.
  • A Color Image Encryption Scheme Combining Hyperchaos and Genetic Codes
    Journal: IEEE Access, 2022
    Contributors: Hira Nazir, Imran Sarwar Bajwa, Saima Abdullah, Rafaqut Kazmi, Muhammad Samiullah
    It explores a color image encryption model that combines hyperchaos and genetic codes for enhanced security.
  • Chaos-Based Cryptographic Mechanism for Smart Healthcare IoT Systems
    Journal: Computers, Materials & Continua, 2022
    Contributors: Muhammad Sami Ullah
    This paper presents a chaos-based cryptographic system for secure communication in smart healthcare IoT networks.
  • Hyperchaos and MD5 Based Efficient Color Image Cipher
    Journal: Computers, Materials & Continua, 2022
    Contributors: Muhammad Sami Ullah
    This article focuses on a cipher for color image encryption using hyperchaos and the MD5 algorithm for increased security.
  • Robust Secure Color Image Watermarking Using 4D Hyperchaotic System, DWT, HbD, and SVD Based on Improved FOA Algorithm
    Journal: Security and Communication Networks, 2021
    Contributors: Hira Nazir, Imran Sarwar Bajwa, Muhammad Samiullah, Waheed Anwar, Muhammad Moosa, Manjit Kaur
    It offers a robust color image watermarking technique utilizing a 4D hyperchaotic system.
  • An Image Encryption Scheme Based on DNA Computing and Multiple Chaotic Systems
    Journal: IEEE Access, 2020
    Contributors: Muhammad Samiullah, Waqar Aslam, Hira Nazir, M. Ikramullah Lali, Basit Shahzad, Muhammad Rafiq Mufti, Humaira Afzal

Conclusion:

The candidate is highly suitable for the Best Researcher Award due to their robust combination of technical expertise, strong academic performance, and contributions to structural design research. With a proven ability to lead and innovate in the field of civil engineering, particularly in the areas of steel and timber structure design, the candidate’s global experience and commitment to research excellence make them an ideal contender for such an award. Focusing on industry impact and expanding research into emerging civil engineering technologies would further enhance their candidacy.

Weifeng Sun | Structural Health Monitoring | Best Researcher Award

Mr. Weifeng Sun | Structural Health Monitoring | Best Researcher Award

Lecturer Chang’an University, China

Weifeng Sun 👨‍🔬, a doctor of engineering, hails from Yanling County, Henan Province. He is a lecturer and master’s supervisor at Chang’an University’s College of Geology and Engineering 🏫. As a member of the Chinese Society for Rock Mechanics and Engineering 🧗‍♂️ and the Communist Party of China 🇨🇳, he has published nearly 20 academic papers 📚 and holds over 40 patents and software copyrights 💻. His work is focused on geological engineering, both in teaching and research

Publication Profile

Orcid

Education 🎓

Weifeng Sun completed his Doctorate in Engineering 🎓 with a focus on geotechnical materials and geological engineering 📊. His educational journey involved rigorous research 🧠 into the deformation and failure mechanisms of geotechnical materials, stability of soil slopes 🌱, and intelligent monitoring technologies 🖥️. His academic foundation provides a strong framework for his innovative research into geotechnical engineering 🔨, making significant contributions to both academia and practical applications in the field 🏗️.

Experience 👨‍🏫

Dr. Weifeng Sun’s professional journey spans across teaching 📘 and research 🔬 at the College of Geology and Engineering, Chang’an University 🏛️. As a lecturer and master’s supervisor 👨‍🏫, he mentors aspiring geologists and engineers while advancing his research in geotechnical engineering 🏞️. With 20+ publications and over 40 patents and software copyrights 📝, he is actively involved in cutting-edge research on geological materials and monitoring systems. His expertise extends to in-situ testing 🧪 and geotechnical project management 🚧.

Awards and Honors 🏆

Dr. Weifeng Sun’s pioneering work in geotechnical engineering has earned him numerous accolades , including recognition for his patents and contributions to the field 📜. As a member of prestigious organizations like the Chinese Society for Rock Mechanics and Engineering 🏅, his innovative research has been acknowledged both nationally and internationally 🌍. His patents 💡 and research papers 📖 reflect his commitment to advancing geotechnical engineering 🏗️, establishing him as a respected figure in the academic and professional communities 🎖️.

Research Focus 🔍.

Weifeng Sun’s research interests lie in the deformation and failure mechanisms of geotechnical materials 🧱, plant-based control on shallow soil slopes stability 🌳, intelligent monitoring for geotechnical structures 🖥️, and in-situ testing of geotechnical materials 🧪. His work aims to improve the safety and efficiency of geotechnical engineering projects 🌐 by leveraging advanced monitoring techniques and developing sustainable engineering solutions 🌱. His multidisciplinary approach addresses both macroscopic and microscopic geotechnical challenges 🔍.

Publications Top Notes

“A Statistical Damage Model for the Soil–Structure Interface Considering Interface Roughness and Soil Shear Area”
Construction and Building Materials, 2024-06
DOI: 10.1016/j.conbuildmat.2024.136606

“Effect of Dry-Wet Cycles and Freeze-Thaw Cycles on the Antierosion Ability of Fiber-Reinforced Loess”
Advances in Materials Science and Engineering, 2021-01
DOI: 10.1155/2021/8834598

“Deformation of Geogrid-Reinforced Segmental Retaining Wall Due to Insufficient Compaction of the Loess Backfill: Case Study in Shaanxi Province, China”
Journal of Performance of Constructed Facilities, 2019-09-18
DOI: 10.1061/(ASCE)CF.1943-5509.0001346

“Failure Models of a Loess Stacked Dam: A Case Study in the Ansai Area (China)”
Bulletin of Engineering Geology and the Environment, 2019-09-06
DOI: 10.1007/s10064-019-01605-z

“A Dry Soil Crushing and Screening Device in Geotechnical Test”
Patent ZL201821116361.2 (2019-01-18)

“A Soil Sensor Installation Device”
Patent ZL201821109384.0 (2019-01-04)

“A Rebar Meter Used to Monitor Force of Anchor Embed in Rock and Soil”
Patent ZL201721579552.8 (2018-08-10)

“A Comprehensive Geotechnical Test Platform for Geological Model Tests of Complex Slopes”
Patent ZL201710480631.1 (2017-08-29)

 

Conclusion

Dr. Weifeng Sun is a highly qualified candidate for the Best Researcher Award due to his substantial contributions to geological engineering, including a robust portfolio of publications and patents. His research addresses critical issues in the field, and his role as an educator further underscores his impact. With improvements in global collaboration and broader dissemination of his work, Dr. Sun could further elevate his stature in the international research community. Overall, his innovative approaches and commitment to advancing geological engineering make him a strong contender for the award.

Juan Bai | Materials and Structures | Women Researcher Award

Dr.  Queensland university of technology, Australia

Dr. Bai J. is an ARC DECRA Fellow and Lecturer at Queensland University of Technology, with a strong background in material physics and chemistry. Their research is centered on designing and synthesizing functional nanostructured materials for electrochemistry and energy conversion, particularly in fuel cells and electrocatalysis. Dr. Bai has published 24 papers in leading SCI journals such as Advanced Materials and ACS Energy Letters. Recognized for their contributions, they have received prestigious awards, including the Australian Research Council DECRA and Discovery Projects awards. Dr. Bai holds a Ph.D. from Shaanxi Normal University and has extensive expertise in electrochemical energy storage and conversion devices.

Professional Profiles:

 

🎓 Education

Feb. 2024 – Present:
ARC DECRA Fellow/Lecturer, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.Apr. 2020 – Jan. 2024:
Postdoc in Electrocatalysis, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.
Supervisors: Prof. Ziqi Sun, Jun MeiSep. 2016 – Jun. 2019:
Ph.D. in Material Physics and Chemistry, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China.
Supervisors: Prof. Yu Chen, Jinghui ZengSep. 2012 – Jun. 2015:
M.S. in Physical Chemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
Supervisors: Prof. Dongmei Sun, Yu Chen, Tianhong LuSep. 2008 – Jun. 2012:
B.S. in Science Education, Department of Applied Chemistry, Yuncheng University, Yuncheng, China.

🔬 Research Objectives

My research is centered on the design and synthesis of functional nanostructured materials for applications in electrochemistry and energy conversion devices. Key areas of focus include:Anodic and Cathodic Reactions of Fuel Cells: ORR, MOR, EOR, and FAORElectrocatalysts: Noble metal-based (Pt, Pd, Rh) nanoparticles for HER, OER, and NRRAs the first/co-first/corresponding author, I have published 24 papers in top-tier SCI Journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials.

🏆 Awards and Honors

2023: Australian Research Council Discovery Early Career Researcher Award (DECRA) – $448,407.002023: Australian Research Council Discovery Projects – $404,530.002018: National Scholarship for Graduate Students (Ph.D.)2017: Research Individual Award by Shaanxi Normal University2017: Ji-Xue Scholarship by Shaanxi Normal University2016: Yuan-Ding Scholarship by Shaanxi Normal University2015: Excellent Student Award by Nanjing Normal University

Strengths for the Award

  1. Extensive Research Experience: The candidate has a strong background in material physics and chemistry, with a focus on nanostructured materials and their applications in electrochemical energy conversion. This expertise is highly relevant to the award, as it demonstrates a deep understanding of a critical field in modern science.
  2. Publication Record: With 24 papers published in high-impact SCI journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials, the candidate has established herself as a leading researcher in her field. This prolific publication record underscores her ability to contribute original and significant research to the scientific community.
  3. Award and Recognition: The candidate has received prestigious awards, including the 2023 Australian Research Council Discovery Early Career Researcher Award (DECRA) and substantial research funding. These accolades reflect her recognized potential and achievements within the scientific community.
  4. Research Focus on Sustainability: The candidate’s work on electrocatalysts and fuel cells, especially in the context of sustainable energy, aligns with global priorities in renewable energy and environmental protection. This makes her research not only innovative but also socially and environmentally impactful.
  5. Professional Skills: The candidate has demonstrated a high level of expertise in experimental techniques, theoretical knowledge, and the use of advanced instrumentation. These skills are essential for conducting cutting-edge research in electrochemistry and material science.

Areas for Improvement

  1. Broader Impact and Outreach: While the candidate has an impressive academic and research background, there is limited information on her involvement in outreach activities, mentoring, or promoting women in science. Increasing visibility and engagement in these areas could enhance her candidacy for a Women Researcher Award, which often considers contributions beyond academic achievements.
  2. Interdisciplinary Collaboration: While the candidate’s research is highly specialized, further collaboration across disciplines could lead to broader applications of her work and increase its overall impact. Engaging in interdisciplinary projects or collaborations with industry could further elevate her profile.

 

✍️Publications Top Note :

Nanocatalysts for Electrocatalytic Oxidation of Ethanol
Authors: J. Bai, D. Liu, J. Yang, Y. Chen
Journal: ChemSusChem, 12(10), 2117-2132, 2019
Citations: 170
🧪 Focus: Ethanol oxidation using nanocatalysts.

Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers
Authors: G.R. Xu, J. Bai, L. Yao, Q. Xue, J.X. Jiang, J.H. Zeng, Y. Chen, J.M. Lee
Journal: ACS Catalysis, 7(1), 452-458, 2017
Citations: 147
🔋 Focus: Hydrogen evolution reaction.

Bimetallic Platinum–Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction
Authors: J. Bai, X. Xiao, Y.Y. Xue, J.X. Jiang, J.H. Zeng, X.F. Li, Y. Chen
Journal: ACS Applied Materials & Interfaces, 10(23), 19755-19763, 2018
Citations: 145
⚗️ Focus: Platinum-rhodium alloy for ethanol oxidation.

Atomically Ultrathin RhCo Alloy Nanosheet Aggregates for Efficient Water Electrolysis in Broad pH Range
Authors: Y. Zhao, J. Bai, X.R. Wu, P. Chen, P.J. Jin, H.C. Yao, Y. Chen
Journal: Journal of Materials Chemistry A, 7(27), 16437-16446, 2019
Citations: 143
🌊 Focus: Water electrolysis using RhCo alloy nanosheets.

Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts Toward Oxygen Reduction Reaction in Alkaline Media
Authors: Q. Xue, J. Bai, C. Han, P. Chen, J.X. Jiang, Y. Chen
Journal: ACS Catalysis, 8(12), 11287-11295, 2018
Citations: 133
🧪 Focus: Oxygen reduction reaction in alkaline media.

Polyethyleneimine Functionalized Platinum Superstructures: Enhancing Hydrogen Evolution Performance by Morphological and Interfacial Control
Authors: G.R. Xu, J. Bai, J.X. Jiang, J.M. Lee, Y. Chen
Journal: Chemical Science, 8(12), 8411-8418, 2017
Citations: 115
⚛️ Focus: Hydrogen evolution through platinum superstructures.

Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies
Authors: J. Bai, G.R. Xu, S.H. Xing, J.H. Zeng, J.X. Jiang, Y. Chen
Journal: ACS Applied Materials & Interfaces, 8(49), 33635-33641, 2016
Citations: 96
🔬 Focus: Rhodium nanosheet for catalytic applications.

Molybdenum‐Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution
Authors: J. Bai, J. Mei, T. Liao, Q. Sun, Z.G. Chen, Z. Sun
Journal: Advanced Energy Materials, 12(5), 2103247, 2022
Citations: 87
Focus: Oxygen evolution in cobalt.

One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction
Authors: S.H. Han, J. Bai, H.M. Liu, J.H. Zeng, J.X. Jiang, Y. Chen, J.M. Lee
Journal: ACS Applied Materials & Interfaces, 8(45), 30948-30955, 2016
Citations: 85
🌍 Focus: Catalytic reduction of hexavalent chromium.

Glycerol Oxidation Assisted Electrocatalytic Nitrogen Reduction: Ammonia and Glyceraldehyde Co-Production on Bimetallic RhCu Ultrathin Nanoflake Nanoaggregates
Authors: J. Bai, H. Huang, F.M. Li, Y. Zhao, P. Chen, P.J. Jin, S.N. Li, H.C. Yao, J.H. Zeng
Journal: Journal of Materials Chemistry A, 7(37), 21149-21156, 2019
Citations: 84

Conclusion

The candidate is exceptionally well-suited for the Women Researcher Award, given her extensive research experience, strong publication record, and recognized achievements in the field of electrochemistry and materials science. Her work is not only innovative but also highly relevant to global challenges, particularly in sustainable energy. To further strengthen her candidacy, the candidate might consider expanding her impact through outreach, mentoring, and interdisciplinary collaboration.

Tao Wang | Geopolymer materials | Best Researcher Award

Mr.  Nanjing Hydraulic Research Institute, China

The research presents a method for developing high-strength, low-carbon geopolymer mortar using fly ash and slag under ambient curing conditions. It addresses the challenge of low strength in fly ash-based geopolymers by analyzing the impact of slag content on mechanical properties. The study also investigates the correlation between microstructural and macroscopic properties using grey relational analysis and assesses the environmental and economic benefits of varying slag content. This work offers practical guidance for advancing sustainable, high-performance geopolymer materials, supported by the National Natural Science Foundation of China.

Professional Profiles:

🏗️ About Our Research

🔍 Our study introduces an innovative method to develop high-strength geopolymer mortar that boasts low-carbon and environmentally friendly characteristics under ambient curing conditions. The research delves into the mechanical properties, microstructural attributes, and environmental benefits of this mortar. 🌍

🚧 Tackling the Strength Challenge

💡 Fly ash-based geopolymer mortar is celebrated for its eco-friendly benefits, but achieving high strength remains a challenge in modern structural engineering. While most studies focus on high-temperature curing, our research uniquely explores the influence of slag content on the mechanical properties of geopolymer mortar under ambient conditions.

🔬 Deep Dive: Microstructural and Mechanical Properties

📊 We conducted a thorough analysis of the microstructural performance and established a framework using the grey relational analysis method to correlate these findings with the mortar’s macroscopic mechanical properties. Additionally, we evaluated the environmental and economic impacts of varying slag content through statistical analysis.

🌱 Towards a Sustainable Future

🌱 This work provides valuable insights and practical guidance for the advancement of low-carbon, environmentally friendly, and high-performance geopolymer mortar, paving the way for future developments in sustainable construction materials.

🔗 Research Support

🏆 This research was generously supported by the National Natural Science Foundation of China (SN: 52171270, 51879168) and the Key Funded Projects of the National Natural Science Foundation of China-Regional Innovation and Development Joint Fund (U23A20672). We confirm that this work has not been submitted elsewhere for publication, and all authors have approved the enclosed manuscript.

Strengths for the Award

  1. Innovative Approach: The research introduces a novel method for developing high-strength geopolymer mortar under ambient curing conditions, addressing a crucial challenge in the field. The emphasis on low-carbon and environmentally friendly characteristics is timely and aligns with global sustainability goals.
  2. Comprehensive Analysis: The study offers a thorough investigation of both the mechanical properties and microstructural performance of the geopolymer mortar. The use of grey relational analysis to establish correlations between microstructural and mechanical properties adds depth to the research.
  3. Environmental and Economic Assessment: The inclusion of environmental and economic impact assessments demonstrates a holistic approach, considering not just the technical performance but also the broader implications of the material.
  4. Support from National Foundations: The research is backed by prestigious funding sources, such as the National Natural Science Foundation of China, which underscores the importance and credibility of the work.

Areas for Improvement

  1. Expansion of Application Scenarios: While the research focuses on ambient curing conditions, exploring the applicability of the developed mortar in different environmental conditions or comparing it with other curing methods could provide more comprehensive insights.
  2. Long-term Performance Evaluation: The study could benefit from a long-term performance analysis, including durability and sustainability over extended periods, to further validate the practical application of the geopolymer mortar.
  3. Broader Comparative Analysis: Including a broader range of comparisons with other high-strength construction materials could strengthen the argument for the practical adoption of geopolymer mortar in various structural engineering scenarios.

 

✍️Publications Top Note :

Development of High-strength Geopolymer Mortar Based on Fly Ash-slag: Correlational Analysis of Microstructural and Mechanical Properties and Environmental Assessment”

Authors: Wang, T., Fan, X., Gao, C.

Journal: Construction and Building Materials (2024), 441, 137515

 

“Performance of Geopolymer Paste under Different NaOH Solution Concentrations”

Authors: Wang, T., Fan, X., Gao, C., Qu, C.

Journal: Magazine of Concrete Research (2024)

 

“Shear Behavior and Strength Prediction of HFRP Reinforced Concrete Beams without Stirrups”

Authors: Gu, Z., Hu, Y., Gao, D., Wang, T., Yang, L.

Journal: Engineering Structures (2023), 297, 117030

 

“Effect of Different Loading Rates on the Fracture Behavior of FRP-Reinforced Concrete”

Authors: Liu, J., Fan, X., Wang, T., Qu, C.

Journal: Fatigue and Fracture of Engineering Materials and Structures (2023), 46(12), pp. 4743–4759

 

“The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review”

Authors: Wang, T., Fan, X., Gao, C., Liu, J., Yu, G.

Journal: Polymers (2023), 15(4), 827

 

“Database-based Error Analysis of Calculation Methods for Shear Capacity of FRP-Reinforced Concrete Beams without Web Reinforcement”

Authors: Wang, T., Fan, X., Gao, C., Qu, C., Liu, J.

Journal: Journal of Southeast University (English Edition) (2023), 39(3), pp. 301–313

 

“Size Effect Theory on Shear Strength of RC Cantilever Beams without Stirrups”

Authors: Jin, L., Wang, T., Du, X.-L.

Journal: Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics (2020), 37(4), pp. 396–404

 

“Size Effect Theory on Shear Failure of RC Cantilever Beams”

Authors: Jin, L., Wang, T., Du, X.-L., Xia, H.

Journal: Gongcheng Lixue/Engineering Mechanics (2020), 37(1), pp. 53–62

 

“Size Effect in Shear Failure of RC Beams with Stirrups: Simulation and Formulation”

Authors: Jin, L., Wang, T., Jiang, X.-A., Du, X.

Journal: Engineering Structures (2019), 199, 109573

 

Conclusion

Tao Wang’s research on high-strength geopolymer mortar is innovative and impactful, addressing key challenges in the construction industry related to sustainability and strength. The study’s comprehensive analysis and consideration of environmental impacts make it a strong contender for the “Best Researcher Award.” However, expanding the research scope to include more comparative and long-term analyses could further enhance its significance.

Morteza Akbari | Structural Control | Best Researcher Award

Mr. Gdańsk University of Technology, Poland

Morteza Akbari is a PhD student in Structural Engineering at Gdańsk University of Technology, Poland, specializing in structural control, earthquake engineering, and soil-structure interaction. He holds an MSc in Structural Engineering from Islamic Azad University, Iran, with a thesis on seismic control of tall buildings using semi-active friction tuned mass dampers. Morteza has published several journal and conference papers on advanced seismic control strategies, focusing on the reliability and optimization of structural control devices in buildings. His professional experience includes technical inspection roles in construction, and he has served as a reviewer for academic journals.

 

Professional Profiles:

scopus

🎓 Education

PhD Student: Structural Engineering, Gdańsk University of Technology, PolandThesis: Optimal design of structural control devices in buildings, including soil-structure interactionSupervisor: Prof. Robert JankowskiDuration: 2023-2027MSc. Structural Engineering: Islamic Azad University, Zahedan Branch, IranGPA: 15.82/20Thesis: Seismic Control of Tall Buildings Equipped with Semi-Active Friction Tuned Mass Damper Including Soil-Structure InteractionSupervisor: Dr. Sadegh EtedaliDuration: 2013-2016B.S. Civil Technology Engineering: Islamic Azad University, Birjand Branch, IranGPA: 16.24/20Duration: 2011-2013A.D. in Building General Works: Ibn Hossam Technical and Vocational University, Birjand, IranGPA: 14.39/20Duration: 2008-2010

🏅 Honor & Award

2016: Graded as an excellent thesis with a GPA of 4/4 (MSc) (18.5/20) Here’s a revised version of the content with headings and emojis to make it more engaging:

🎓 Education

PhD Student: Structural Engineering, Gdańsk University of Technology, PolandThesis: Optimal design of structural control devices in buildings, including soil-structure interactionSupervisor: Prof. Robert JankowskiDuration: 2023-2027MSc. Structural Engineering: Islamic Azad University, Zahedan Branch, IranGPA: 15.82/20Thesis: Seismic Control of Tall Buildings Equipped with Semi-Active Friction Tuned Mass Damper Including Soil-Structure InteractionSupervisor: Dr. Sadegh EtedaliDuration: 2013-2016B.S. Civil Technology Engineering: Islamic Azad University, Birjand Branch, IranGPA: 16.24/20Duration: 2011-2013A.D. in Building General Works: Ibn Hossam Technical and Vocational University, Birjand, IranGPA: 14.39/20Duration: 2008-2010

💼 Field of Interest

Structural ControlStructural ReliabilityEarthquake EngineeringSoil-Structure InteractionMachine Learning (ML)Finite Element Method

🛠️ Professional Skills

Engineering Software and Programming Languages:

MATLAB & SimulinkSeismoSignalAUTO CAD

Other Skills:

Microsoft Office

🏅 Honor & Award

2016: Graded as an excellent thesis with a GPA of 4/4 (MSc) (18.5/20)

🌐 Experience

Technical Inspector: Ready-mixed concrete company and construction company, Birjand and Mashhad, Iran (Full-time, 2017-2022)Surveyor: Housing foundation office and document registration office, Birjand, Iran (Part-time, 2017-2021)

✍️ Refereeing Experience

Reviewer: Structures Journal, Elsevier (2023-2024)Reviewer: Results in Engineering, Elsevier (2023-2024)

Strengths for the Award:

  1. Strong Academic Background:
    • Morteza Akbari is currently pursuing a PhD in Structural Engineering at Gdańsk University of Technology, with a focus on the optimal design of structural control devices in buildings, including soil-structure interaction. His academic journey also includes an MSc in Structural Engineering and a BSc in Civil Technology Engineering, demonstrating a solid foundation in the field.
  2. Specialization in Seismic Control and Soil-Structure Interaction:
    • His research work is deeply rooted in seismic control strategies, which is a critical area in structural engineering, particularly for earthquake-prone regions. His focus on soil-structure interaction further emphasizes his understanding of complex dynamics in structural design.
  3. Notable Publications:
    • Akbari has several publications in reputable journals, including Geomechanics and Engineering, Soil Dynamics and Earthquake Engineering, and the Journal of Earthquake and Tsunami. His research covers important topics such as friction-tuned mass dampers, failure probability in tall buildings, and advanced seismic control strategies.
  4. Collaborations with Renowned Researchers:
    • His work with respected supervisors like Prof. Robert Jankowski and Dr. Sadegh Etedali adds credibility to his research. Collaborating with leading experts in the field strengthens his profile as a researcher.
  5. Recognition and Awards:
    • Grading of his MSc thesis as excellent and his experience as a reviewer for journals like Structures and Results in Engineering demonstrate his academic rigor and recognition within the research community.
  6. Relevant Skill Set:
    • Proficiency in engineering software like MATLAB, Simulink, and SeismoSignal, as well as experience with programming languages, makes him technically adept in his research domain.

Areas for Improvement:

  1. Broader Impact of Research:
    • While Akbari’s research is specialized and impactful within structural control and seismic mitigation, expanding the scope to include more interdisciplinary applications or real-world case studies could enhance the broader relevance and applicability of his work.
  2. International Exposure and Collaborations:
    • Increasing international collaborations and exposure through conferences, joint research projects, or partnerships with global research institutions could further elevate his profile.
  3. Publication in High-Impact Journals:
    • While his current publications are impressive, targeting more high-impact journals in civil engineering or structural dynamics could increase the visibility and citation of his work.
  4. Diversification of Research Topics:
    • Exploring additional areas within structural engineering or integrating emerging technologies like AI and machine learning into his research could provide new insights and innovations.

 

 

✍️Publications Top Note :

. Advanced Seismic Control Strategies for Smart Base Isolation Buildings Utilizing Active Tendon and MR Dampers

Authors: Akbari, M., Zand, J.P., Falborski, T., Jankowski, R.

Journal: Engineering Structures

Publication Year: 2024

Volume: 318

Article ID: 118756

2. A New Seismic Control Framework of Optimal PIλDµ Controller Series with Fuzzy PD Controller Including Soil-Structure Interaction

Authors: Etedali, S., Zamani, A.-A., Akbari, M., Seifi, M.

Journal: Journal of the Franklin Institute

Publication Year: 2023

Volume: 360

Issue: 14

Pages: 10536–10563

Citations: 4

3. Friction Tuned Mass Dampers in Seismic-Excited High-Rise Buildings with SSI Effects: A Reliability Assessment

Authors: Etedali, S., Akbari, M., Seifi, M.

Journal: Journal of Earthquake and Tsunami

Publication Year: 2023

Volume: 17

Issue: 2

Article ID: 2250022

Citations: 7

4. Failure Probability of Tall Buildings with TMD in the Presence of Structural, Seismic, and Soil Uncertainties

Authors: Etedali, S., Seifi, M., Akbari, M.

Journal: Structural Engineering and Mechanics

Publication Year: 2023

Volume: 85

Issue: 3

Pages: 381–391

Citations: 2

5. MOCS-Based Optimum Design of TMD and FTMD for Tall Buildings Under Near-Field Earthquakes Including SSI Effects

Authors: Etedali, S., Akbari, M., Seifi, M.

Journal: Soil Dynamics and Earthquake Engineering

Publication Year: 2019

Volume: 119

Pages: 36–50

Citations: 52

6. A Numerical Study on Optimal FTMD Parameters Considering Soil-Structure Interaction Effects

Authors: Etedali, S., Seifi, M., Akbari, M.

Journal: Geomechanics and Engineering

Publication Year: 2018

Volume: 16

Issue: 5

Pages: 527–538

Citations: 12

Conclusion:

Morteza Akbari’s academic achievements, specialized research in seismic control and soil-structure interaction, and his solid publication record make him a strong contender for the Best Researcher Award. His work addresses critical challenges in structural engineering, particularly in enhancing the safety and resilience of buildings against seismic activities. By expanding his research’s broader impact and increasing his international collaborations, Akbari can further solidify his standing as a leading researcher in his field. His current trajectory suggests a promising future, with the potential to make significant contributions to civil engineering and structural dynamics.

Dr. Mostafa Khalil | soil dynamics | Academic Achiever in Materials Mechanics Award

Dr. Mostafa Khalil | soil dynamics | Academic Achiever in Materials Mechanics Award

Dr. Mostafa Khalil, Housing and Building National Research Center, Egypt

Dr. Mostafa Said Yousef Khalil, a Ph.D. student and Assistant Lecturer at the Building Materials Research and Quality Control Institute, HBRC, Egypt, has a robust background in engineering. Graduating from Ain Shams University in 2011, he served as a Roadway Projects Manager Engineer at HBRC from 2014 to 2019. In 2019, he earned his M.Sc. in Geotechnical Engineering. Since April 2019, he has been an Assistant Lecturer at HBRC. Commencing his doctoral studies in March 2020 at Ain Shams University, Dr. Khalil continues to contribute significantly to the field of geotechnical engineering.

 

Professional Profiles:

Google Scholar

 

Education and Early Career 📚

I graduated from Ain Shams University in 2011, embarking on a career that would soon highlight my expertise and leadership. From 2014 to 2019, I served as a Roadway Projects Manager Engineer at HBRC, showcasing my skills in project management and engineering excellence.

Academic Pursuits and Professional Growth 🎓

In 2019, I earned my M.Sc. in Geotechnical Engineering, a testament to my commitment to advancing my knowledge and skills. Since April 2019, I have been working as an Assistant Lecturer at the Material and Quality Control Institute at HBRC, imparting knowledge and guiding the next generation of engineers.

Doctoral Studies and Ongoing Contributions 🎓

In March 2020, I commenced my doctoral studies at Ain Shams University, further deepening my expertise in geotechnical engineering. My journey continues as I strive to contribute significantly to the field, combining academic rigor with practical experience to drive innovation and quality in engineering.🌟 Dr. Mostafa Said Yousef Khalil is a dedicated professional, continuously pushing the boundaries of engineering and contributing to the field with passion and expertise.

📖 Publications Top Note :

Lean Talent Management: A Novel Approach for Increasing Creativity in Architectural Design Firms

Authors: AAE Othman, MHM Khalil

Journal: Engineering, Construction and Architectural Management

Citations: 29

A Lean Talent Management Framework for Maximizing Creativity in Architectural Design Firms

Authors: AAE Othman, MHM Khalil

Journal: International Journal of Construction Management

Citations: 16

Talent Management: A Novel Approach for Developing Innovative Solutions Towards Heritage Communities Development

Authors: M Khalil, H Elsaay, A Othman

Journal: Archnet-IJAR: International Journal of Architectural Research

Citations: 14

Museum Visitors Learning Identities Interrelationships with Their Experiences

Authors: KKH ElDamshiry, MHM Khalil

Conference: Green Heritage Conference

Citations: 8

Creative Identities: From Divergence to Fusion in Cultural Exhibits to Overcome Human-Related Cultural Heritage Deterioration

Authors: MHM Khalil, KKH ElDamshiry

Conference: Green Heritage Conference

Citations: 3

Divergent Heritage Sustainability: A Threefold Approach Through Lean Talent Management

Authors: AAE Othman, MH Khalil

Journal: Journal of Engineering, Design and Technology

Citations: 2