Da Wan Kim | Soft Robotics | Best Researcher Award

Prof. Da Wan Kim | Soft Robotics | Best Researcher Award

Assistant Professor | korea national university of transportation | South Korea

Assistant Professor in the Department of Electronic Engineering at Korea National University of Transportation (KNUT). With a background in chemical engineering and an interdisciplinary focus, he is recognized for his innovative research in soft bioelectronics, bioinspired adhesives, and skin-interfacing devices. His career bridges materials science, electronics, and biomedical applications, positioning him at the forefront of next-generation wearable technologies. After completing his B.Sc. and Ph.D. in Chemical Engineering at, Prof. Kim conducted postdoctoral research under Prof. Changhyun Pang and held a visiting researcher position at the. In , he joined KNUT as a faculty member, where he continues to explore adaptive materials and systems for human-machine interfaces, many of which have been featured on journal covers. His work is supported by several domestic and international patents related to advanced adhesives and sensor technologies. With a commitment to interdisciplinary collaboration, he continues to make significant contributions to smart, sustainable, and human-centric electronics

Professional Profile

Education

Prof. Da Wan Kim’s academic foundation is rooted in Chemical Engineering, having completed both his undergraduate and doctoral studies at Sungkyunkwan University in South Korea. His B.Sc. in Chemical Engineering  provided a strong grounding in thermodynamics, materials science, and process systems, which laid the groundwork for his transition into advanced materials research. He pursued his Ph.D. in Chemical Engineering under the mentorship of Prof. Changhyun Pang, focusing on bioinspired adhesive architectures for soft bioelectronics. His doctoral research emphasized multifunctional materials for skin-like electronics, exploring how nature-inspired strategies could enable better adaptability, adhesion, and integration with biological tissues. His dissertation contributed significantly to the fields of wearable technology and bioelectronics, and his early publications garnered international attention for their novelty and applicability. Throughout his academic journey, Prof. Kim demonstrated strong interdisciplinary engagement by integrating principles from chemical engineering, nanotechnology, biomedical engineering, and electronics. His academic performance and research outcomes during his Ph.D. positioned him for highly competitive postdoctoral and faculty roles.

Experience

Prof. Da Wan Kim has cultivated a rich and diverse professional portfolio in the fields of soft electronics, materials science, and bioengineering. Sinc, he has served as an Assistant Professor* in the Department of Electronic Engineering at Korea National University of Transportation (KNUT), where he leads research in soft bioelectronics and adaptive wearable systems. Prior to his faculty appointment, he worked as a Postdoctoral Researcher  in the Department of Chemical Engineering at Sungkyunkwan University, where he collaborated with Prof. Changhyun Pang on projects related to electroactive adhesives, self-healing materials, and next-generation skin-interfacing devices. During the same period, he was also a Visiting Researcher at KRISS (Korea Research Institute of Standards and Science) under the supervision of Dr. Minseok Kim, broadening his expertise in nanocharacterization and precision sensor design. His collaborative work has resulted in over high-impact publications, several  and journal features, including cover articles in Advanced Materials InfoMat, and ACS Nano. He has played both leading and corresponding author roles, underscoring his integral contributions.

Research Focus

Prof. Da Wan Kim’s research lies at the intersection of chemical engineering, materials science, and soft electronics, with a specific focus on bioinspired adhesives wearable sensors, and haptic human-machine interfaces. He explores the structure-property-function relationships of adaptive materials that interact seamlessly with human skin and biological environments. A hallmark of his research is the translation of biological adhesion mechanisms inspired by octopi, beetles, and amphibians—into engineered materials capable of wet/dry adhesion, electroactivity, and biocompatibility. These developments have applications in soft robotics, electronic skin (e-skin) and personalized healthcare devices. His recent work includes designing Marangoni-driven 3D microdomes for e-skin, self-healing micro-suction adhesives, and skin-adaptive optical sensors for biofluid analysis. He also investigates structural nanocomposites for energy harvesting, sensory feedback, and wireless communications in flexible systems. By combining*nanoengineering, functional polymers, and bioinspired mechanics, Prof. Kim’s lab develops platforms for autonomous, multifunctional, and sustainable soft electronics. His research contributes to the future of wearable healthcare XR technologies, and robotic interfaces aiming to bridge the physical and digital with comfort, intelligence, and adaptability.

Awards and Honors

Prof. Da Wan Kim has received significant academic recognition through featured journal covers, corresponding authorships, and international patent filings, reflecting the impact and novelty of his research in the fields of bioelectronics and functional materials. Multiple of his works have been selected for cover stories in prestigious journals such as Advanced Functional Materials ACS Nano Chemical Engineering Journal, and Advanced Materials Technologies. This includes the Inside Front Cover selection for his  article in Advanced Functional Materials on haptic interface platforms, and Back Cover features in Advanced Materials and Nano Research. These distinctions highlight the visual and scientific appeal of his designs, often inspired by octopus limbs, suction dynamics, or bioadaptive mechanisms. Prof. Kim has also co-invented more than  in South Korea and U.S.  related to adhesive materials, wearable devices, and sensor systems. His patents cover innovations such as vibration-resistant dry adhesives micro-absorbent hybrid patches, and fiber-based temperature sensors. Although early in his faculty career, his consistent publication record, interdisciplinary projects, and translational research achievements suggest a trajectory of continued recognition in academic and industrial spheres. His awards are evidence of his leadership in innovation-driven materials science.

Publication Top Notes

Bioinspired Hierarchical Soft Gripper with Hexagonal and Suction Interfaces for Strain-Guided Object Handling

Year 2025

Biodegradable Adhesive Interfaces for Bioelectronic and Biomedical Applications

Year 2025

Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor

Year 2025

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing

Year 2022

Conclusion

Prof. Da Wan Kim’s impressive research record, interdisciplinary approach, and high-impact publications make him an excellent candidate for the Best Researcher Award. His innovative research focus and collaboration skills demonstrate significant potential for continued contributions to the field. With some additional emphasis on expanding his research scope, mentorship, and broader societal impact, Prof. Kim’s application would be even stronger. Overall, he is a strong contender for the award.

Xiankun Zhang | materials science | Best Researcher Award

Prof. Xiankun Zhang | materials science | Best Researcher Award

professor at  University of Science and Technology Beijing, China

📜 Xiankun Zhang is a leading researcher at the University of Science and Technology Beijing, specializing in two-dimensional materials, optoelectronic devices, and transition metal dichalcogenides. With over 44 publications and a high h-index of 22, Zhang has made significant contributions to advanced functional materials and nanoscale photodetectors. Passionate about integrating innovation into silicon-compatible technology, Zhang is a key figure in the field of material science.

Professional Profiles:

Education🎓

PhD in Material Science, University of Science and Technology Beijing, China Master’s Degree in Physics, Tsinghua University, China Bachelor’s Degree in Applied Physics, Peking University, China Focused on emerging materials and their optoelectronic applications, Zhang’s academic journey reflects a strong foundation in interdisciplinary research.

Experience💼 

Senior Researcher, University of Science and Technology Beijing Visiting Scholar, MIT Nano Research Lab Research Fellow, National Center for Nanoscience and Technology Zhang has actively collaborated with global leaders in the nanotechnology domain, showcasing excellence in research and innovation.

Awards and Honors🏅

National Science Fund for Distinguished Young Scholars Outstanding Researcher in Nanotechnology, China Materials Congress Highly Cited Researcher Award, Clarivate Analytics Recognized for transformative work in nanoscale photodetectors and 2D materials.

Research Focus🔬

Two-dimensional materials and heterojunctionsHigh-efficiency photodetectorsTransition metal dichalcogenidesSilicon-compatible optoelectronics Zhang’s work focuses on bridging the gap between traditional materials and next-generation electronic devices.

✍️Publications Top Note :

“Poly (4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode”
Published in Nature Communications, this paper has been cited 234 times, emphasizing a groundbreaking sulfur vacancy healing strategy for improved photodiodes.

“Manganese-Based Materials for Rechargeable Batteries Beyond Lithium-Ion”
Published in Advanced Energy Materials, this work, cited 153 times, advances manganese-based materials for next-generation batteries.

“Near-Ideal van der Waals Rectifiers Based on All-Two-Dimensional Schottky Junctions”
Another Nature Communications article, cited 153 times, discusses advancements in two-dimensional rectifiers.

“Interfacial Charge Behavior Modulation in Perovskite Quantum Dot-Monolayer MoS2 Heterostructures”
With 148 citations, this Advanced Functional Materials paper explores charge behavior in hybrid heterostructures.

“Defect-Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters”
Published in Advanced Materials, cited 134 times, highlighting defect engineering in MoS2 for logic applications.

“Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays”
An ACS Nano publication with 116 citations, focusing on heterostructure arrays for enhanced device performance.

“Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS–MoS2 Heterostructures”
Featured in Nano Letters, this study has 113 citations, addressing high-performance infrared photodetection.

“Hidden Vacancy Benefit in Monolayer 2D Semiconductors”
Advanced Materials work with 86 citations, detailing vacancy benefits in 2D semiconductors.

“Piezotronic Effect on Interfacial Charge Modulation in Mixed-Dimensional van der Waals Heterostructures”
Cited 82 times in Nano Energy, examining the piezotronic effect for flexible photodetectors.

“Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes”
Published in ACS Nano, cited 80 times, discussing self-healing junctions.

Conclusion

Xiankun Zhang’s prolific research output, significant citations, and impactful work in advanced materials science make him a strong candidate for the Best Researcher Award. Addressing areas such as broader dissemination, interdisciplinary applications, and community engagement could further solidify his standing as a leader in his field. His research aligns well with the award’s goals of recognizing innovation, collaboration, and impact in academia.