Atsushi Kakogawa | Robotics and Mechatronics | Best Researcher Award

Assoc. Prof. Dr Atsushi Kakogawa |  Robotics and Mechatronics | Best Researcher Award

Associate Professor at Ritsumeikan University, Japan

🌟 Atsushi Kakogawa, Ph.D., is an Associate Professor in Robotics at Ritsumeikan University, Japan. A pioneer in robotics, he excels in mobile robot design, mechanical systems, and embedded systems. Proficient in programming languages like C++, Python, and more, Dr. Kakogawa has a prolific career marked by teaching, research, and leadership in international robotics conferences.

Profile

scholar

Education🎓 

Doctor of Engineering, Ritsumeikan University, Japan, 2015.  Master of Engineering, Ritsumeikan University, Japan, 2012.  Bachelor of Engineering, Department of Robotics, Ritsumeikan University, Japan, 2010.

Experience💼

Associate Professor, Ritsumeikan University (2023–Present).  Lecturer and Visiting Assistant Professor at University of Waterloo (2017). Assistant Professor, Ritsumeikan University (2015–2019).

Awards and Honors🏆

KAKENHI Grants from Japan Society for the Promotion of Science. Shiga Prefecture Technology Promotion Subsidy (2022). Organizer and Editor roles in top IEEE conferences, including IROS and ICRA.

Research Focus🤖

Robotics: Mobile robot design and mechanical system applications.  Embedded systems and advanced Internet communication technologies.  Multidisciplinary programming in C++, Python, and SQL for robotics innovation.

Publication  Top Notes

Design of a Multilink-Articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints

Journal: Advanced Robotics, 2018

Citations: 73

Highlights: Introduces a pipeline robot leveraging passive elastic joints for adaptability in complex pipeline systems.

Mobility of an In-Pipe Robot with Screw Drive Mechanism Inside Curved Pipes

Conference: IEEE International Conference on Robotics and Biomimetics, 2010

Citations: 72

Highlights: Explores screw drive mechanisms for pipeline robots navigating curved environments.

Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved and Vertical Pipes

Journal: Advanced Robotics, 2012

Citations: 55

Highlights: Focuses on optimizing spring stiffness to enhance robot mobility in diverse pipe geometries.

Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes

Journal: Robotica, 2016

Citations: 50

Highlights: Discusses arm length designs crucial for overcoming vertical bends in pipelines.

An In-Pipe Robot with Underactuated Parallelogram Crawler Modules

Conference: IEEE International Conference on Robotics and Automation, 2014

Citations: 48

Highlights: Presents a robot with a novel crawler module enhancing adaptability and efficiency.

Design of a Multilink-Articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II

Conference: IEEE/RSJ Intelligent Robots and Systems, 2016

Citations: 46

Highlights: Develops AIRo-II, a wheeled robot optimized for winding and complex pipelines.

Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches

Conference: IEEE International Conference on Automation Science and Engineering, 2012

Citations: 42

Highlights: Proposes mechanisms for robots to autonomously navigate pipeline branches.

Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes

Conference: IEEE ISR, 2013

Citations: 41

Highlights: Focuses on screw drive robots overcoming pipeline bends and branches.

Underactuated Modular Finger with Pull-In Mechanism for a Robotic Gripper

Conference: IEEE Robotics and Biomimetics, 2016

Citations: 40

Highlights: Introduces a robotic gripper using an underactuated mechanism for enhanced grasping.

Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators

Journal: IEEE Robotics and Automation Letters, 2018

Citations: 39

Highlights: Examines stiffness optimization for snake robots in planar environments.

Conclusion

Dr. Atsushi Kakogawa is a highly accomplished researcher whose contributions to robotics and mechatronics make him a strong contender for the Best Researcher Award. His academic rigor, leadership in the robotics community, and innovation in mobile and embedded systems distinguish him as a trailblazer in his field. By addressing areas such as industrial collaboration and broader global recognition, he could solidify his position as a preeminent figure in robotics research.

Atsushi Kakogawa | Robotics and Mechatronics | Best Researcher Award Ritsumeikan University

Assoc. Prof. Dr Atsushi Kakogawa |  Robotics and Mechatronics | Best Researcher Award

Associate Professor at Ritsumeikan University, Japan

🌟 Atsushi Kakogawa, Ph.D., is an Associate Professor in Robotics at Ritsumeikan University, Japan. A pioneer in robotics, he excels in mobile robot design, mechanical systems, and embedded systems. Proficient in programming languages like C++, Python, and more, Dr. Kakogawa has a prolific career marked by teaching, research, and leadership in international robotics conferences.

Profile

scholar

Education🎓 

Doctor of Engineering, Ritsumeikan University, Japan, 2015.  Master of Engineering, Ritsumeikan University, Japan, 2012.  Bachelor of Engineering, Department of Robotics, Ritsumeikan University, Japan, 2010.

Experience💼

Associate Professor, Ritsumeikan University (2023–Present).  Lecturer and Visiting Assistant Professor at University of Waterloo (2017). Assistant Professor, Ritsumeikan University (2015–2019).

Awards and Honors🏆

KAKENHI Grants from Japan Society for the Promotion of Science. Shiga Prefecture Technology Promotion Subsidy (2022). Organizer and Editor roles in top IEEE conferences, including IROS and ICRA.

Research Focus🤖

Robotics: Mobile robot design and mechanical system applications.  Embedded systems and advanced Internet communication technologies.  Multidisciplinary programming in C++, Python, and SQL for robotics innovation.

Publication  Top Notes

Design of a Multilink-Articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints

Journal: Advanced Robotics, 2018

Citations: 73

Highlights: Introduces a pipeline robot leveraging passive elastic joints for adaptability in complex pipeline systems.

Mobility of an In-Pipe Robot with Screw Drive Mechanism Inside Curved Pipes

Conference: IEEE International Conference on Robotics and Biomimetics, 2010

Citations: 72

Highlights: Explores screw drive mechanisms for pipeline robots navigating curved environments.

Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved and Vertical Pipes

Journal: Advanced Robotics, 2012

Citations: 55

Highlights: Focuses on optimizing spring stiffness to enhance robot mobility in diverse pipe geometries.

Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes

Journal: Robotica, 2016

Citations: 50

Highlights: Discusses arm length designs crucial for overcoming vertical bends in pipelines.

An In-Pipe Robot with Underactuated Parallelogram Crawler Modules

Conference: IEEE International Conference on Robotics and Automation, 2014

Citations: 48

Highlights: Presents a robot with a novel crawler module enhancing adaptability and efficiency.

Design of a Multilink-Articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II

Conference: IEEE/RSJ Intelligent Robots and Systems, 2016

Citations: 46

Highlights: Develops AIRo-II, a wheeled robot optimized for winding and complex pipelines.

Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches

Conference: IEEE International Conference on Automation Science and Engineering, 2012

Citations: 42

Highlights: Proposes mechanisms for robots to autonomously navigate pipeline branches.

Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes

Conference: IEEE ISR, 2013

Citations: 41

Highlights: Focuses on screw drive robots overcoming pipeline bends and branches.

Underactuated Modular Finger with Pull-In Mechanism for a Robotic Gripper

Conference: IEEE Robotics and Biomimetics, 2016

Citations: 40

Highlights: Introduces a robotic gripper using an underactuated mechanism for enhanced grasping.

Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators

Journal: IEEE Robotics and Automation Letters, 2018

Citations: 39

Highlights: Examines stiffness optimization for snake robots in planar environments.

Conclusion

Dr. Atsushi Kakogawa is a highly accomplished researcher whose contributions to robotics and mechatronics make him a strong contender for the Best Researcher Award. His academic rigor, leadership in the robotics community, and innovation in mobile and embedded systems distinguish him as a trailblazer in his field. By addressing areas such as industrial collaboration and broader global recognition, he could solidify his position as a preeminent figure in robotics research.

Hugo Bildstein | Sensor-based Control | Best Researcher Award

Dr. Hugo Bildstein | Sensor-based Control | Best Researcher Award

Dr. LAAS-CNRS, France

Hugo Bildstein is a PhD candidate and Temporary Teaching and Research Assistant at the University of Toulouse 3 – Paul Sabatier, affiliated with the RAP team at LAAS-CNRS. His academic background includes a Master’s degree in Robotics from Toulouse and a previous engineering degree in Mechatronics from ENS Rennes. Hugo’s research focuses on visual predictive control for mobile manipulators, with notable publications in leading journals and conferences, including Robotics and Autonomous Systems (RAS) and IEEE/ASME AIM. His work explores strategies for improving visibility, manipulability, and stability in robotic systems.

Professional Profiles:

scopus

Academic Background 🎓:

Hugo Bildstein is currently a Temporary Teaching and Research Assistant at the University of Toulouse 3 – Paul Sabatier, working within the RAP team at LAAS-CNRS, Toulouse. His academic journey includes a PhD at the same university from 2020-2024, following a Master’s degree in Robotics: Decision and Control (RODECO) at the University of Toulouse 3 – Paul Sabatier. Hugo also holds a Master’s degree in Mechatronics from ENS Rennes and ranked 11th in the Agrégation in Industrial Engineering Sciences, Electrical Engineering option in 2019.

Research Activities and  📚:

Hugo’s research focuses on enhancing visual predictive control for mobile manipulators. His work includes:“Visual Predictive Control for Mobile Manipulators: Visibility, Manipulability, and Stability” – to be published in Robotics and Autonomous Systems (RAS) in 2024.“Enhanced Visual Predictive Control Scheme for Mobile Manipulators” – presented at the 2023 European Conference on Mobile Robots (ECMR) in Coimbra, Portugal.“Multi-camera Visual Predictive Control Strategy for Mobile Manipulators” – showcased at the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) in Seattle, USA.“Visual Predictive Control Strategy for Mobile Manipulators” – discussed at the 2022 European Control Conference (ECC) in London, United Kingdom.

Research Analysis for Hugo Bildstein

Strengths for the Award:

  1. Innovative Contributions: Hugo Bildstein’s research focuses on cutting-edge topics in robotics, particularly visual predictive control for mobile manipulators. His work on enhancing control schemes through multi-camera strategies and visual feedback systems is highly relevant and forward-thinking in the field of robotics and autonomous systems.
  2. Diverse Research Outputs: Bildstein has published several papers in prestigious journals and conferences, demonstrating a consistent and impactful research output. His papers, such as those presented at the European Conference on Mobile Robots (ECMR) and the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), highlight significant contributions to the field.
  3. Academic Excellence: His strong academic background, including a PhD in Robotics and a Master’s degree in Robotics and Control, coupled with high rankings in competitive exams like the Agrégation in Industrial Engineering Sciences, underscores his deep expertise and commitment to the field.
  4. Teaching and Research Experience: As a Teaching and Research Assistant at the University of Toulouse 3 – Paul Sabatier, Bildstein not only engages in advanced research but also contributes to academic teaching, showcasing his ability to bridge research and education effectively.

Areas for Improvement:

  1. Citation Impact: While Bildstein has several publications, some of his recent papers have yet to accumulate significant citations. Increasing the visibility and impact of his work through broader dissemination and collaboration could enhance his academic profile.
  2. Interdisciplinary Applications: Expanding research to explore interdisciplinary applications of his work could provide broader impact and open new avenues for practical implementation of his findings.
  3. Research Collaboration: Engaging in collaborative research with industry partners or other academic institutions could provide additional resources and perspectives, potentially leading to more comprehensive studies and real-world applications.

Conclusion:

Hugo Bildstein is a promising candidate for the Best Researcher Award due to his innovative contributions to the field of robotics, particularly in visual predictive control for mobile manipulators. His strong academic background, diverse research outputs, and active role in teaching and research highlight his potential and dedication. Addressing areas such as citation impact and interdisciplinary applications could further enhance his standing in the research community.

✍️Publications Top Note :

1. Enhanced Visual Predictive Control Scheme for Mobile Manipulators

Authors: Hugo Bildstein, A. Durand-Petiteville, V. Cadenat

Citations: 0

2. Multi-camera Visual Predictive Control Strategy for Mobile Manipulators

Authors: Hugo Bildstein, A. Durand-Petiteville, V. Cadenat

3. Visual Predictive Control Strategy for Mobile Manipulators

Authors: Hugo Bildstein, A. Durand-Petiteville
Citations: 2
Access: Open access