Da Wan Kim | Soft Robotics | Best Researcher Award

Prof. Da Wan Kim | Soft Robotics | Best Researcher Award

Assistant Professor | korea national university of transportation | South Korea

Assistant Professor in the Department of Electronic Engineering at Korea National University of Transportation (KNUT). With a background in chemical engineering and an interdisciplinary focus, he is recognized for his innovative research in soft bioelectronics, bioinspired adhesives, and skin-interfacing devices. His career bridges materials science, electronics, and biomedical applications, positioning him at the forefront of next-generation wearable technologies. After completing his B.Sc. and Ph.D. in Chemical Engineering at, Prof. Kim conducted postdoctoral research under Prof. Changhyun Pang and held a visiting researcher position at the. In , he joined KNUT as a faculty member, where he continues to explore adaptive materials and systems for human-machine interfaces, many of which have been featured on journal covers. His work is supported by several domestic and international patents related to advanced adhesives and sensor technologies. With a commitment to interdisciplinary collaboration, he continues to make significant contributions to smart, sustainable, and human-centric electronics

Professional Profile

Education

Prof. Da Wan Kim’s academic foundation is rooted in Chemical Engineering, having completed both his undergraduate and doctoral studies at Sungkyunkwan University in South Korea. His B.Sc. in Chemical Engineering  provided a strong grounding in thermodynamics, materials science, and process systems, which laid the groundwork for his transition into advanced materials research. He pursued his Ph.D. in Chemical Engineering under the mentorship of Prof. Changhyun Pang, focusing on bioinspired adhesive architectures for soft bioelectronics. His doctoral research emphasized multifunctional materials for skin-like electronics, exploring how nature-inspired strategies could enable better adaptability, adhesion, and integration with biological tissues. His dissertation contributed significantly to the fields of wearable technology and bioelectronics, and his early publications garnered international attention for their novelty and applicability. Throughout his academic journey, Prof. Kim demonstrated strong interdisciplinary engagement by integrating principles from chemical engineering, nanotechnology, biomedical engineering, and electronics. His academic performance and research outcomes during his Ph.D. positioned him for highly competitive postdoctoral and faculty roles.

Experience

Prof. Da Wan Kim has cultivated a rich and diverse professional portfolio in the fields of soft electronics, materials science, and bioengineering. Sinc, he has served as an Assistant Professor* in the Department of Electronic Engineering at Korea National University of Transportation (KNUT), where he leads research in soft bioelectronics and adaptive wearable systems. Prior to his faculty appointment, he worked as a Postdoctoral Researcher  in the Department of Chemical Engineering at Sungkyunkwan University, where he collaborated with Prof. Changhyun Pang on projects related to electroactive adhesives, self-healing materials, and next-generation skin-interfacing devices. During the same period, he was also a Visiting Researcher at KRISS (Korea Research Institute of Standards and Science) under the supervision of Dr. Minseok Kim, broadening his expertise in nanocharacterization and precision sensor design. His collaborative work has resulted in over high-impact publications, several  and journal features, including cover articles in Advanced Materials InfoMat, and ACS Nano. He has played both leading and corresponding author roles, underscoring his integral contributions.

Research Focus

Prof. Da Wan Kim’s research lies at the intersection of chemical engineering, materials science, and soft electronics, with a specific focus on bioinspired adhesives wearable sensors, and haptic human-machine interfaces. He explores the structure-property-function relationships of adaptive materials that interact seamlessly with human skin and biological environments. A hallmark of his research is the translation of biological adhesion mechanisms inspired by octopi, beetles, and amphibians—into engineered materials capable of wet/dry adhesion, electroactivity, and biocompatibility. These developments have applications in soft robotics, electronic skin (e-skin) and personalized healthcare devices. His recent work includes designing Marangoni-driven 3D microdomes for e-skin, self-healing micro-suction adhesives, and skin-adaptive optical sensors for biofluid analysis. He also investigates structural nanocomposites for energy harvesting, sensory feedback, and wireless communications in flexible systems. By combining*nanoengineering, functional polymers, and bioinspired mechanics, Prof. Kim’s lab develops platforms for autonomous, multifunctional, and sustainable soft electronics. His research contributes to the future of wearable healthcare XR technologies, and robotic interfaces aiming to bridge the physical and digital with comfort, intelligence, and adaptability.

Awards and Honors

Prof. Da Wan Kim has received significant academic recognition through featured journal covers, corresponding authorships, and international patent filings, reflecting the impact and novelty of his research in the fields of bioelectronics and functional materials. Multiple of his works have been selected for cover stories in prestigious journals such as Advanced Functional Materials ACS Nano Chemical Engineering Journal, and Advanced Materials Technologies. This includes the Inside Front Cover selection for his  article in Advanced Functional Materials on haptic interface platforms, and Back Cover features in Advanced Materials and Nano Research. These distinctions highlight the visual and scientific appeal of his designs, often inspired by octopus limbs, suction dynamics, or bioadaptive mechanisms. Prof. Kim has also co-invented more than  in South Korea and U.S.  related to adhesive materials, wearable devices, and sensor systems. His patents cover innovations such as vibration-resistant dry adhesives micro-absorbent hybrid patches, and fiber-based temperature sensors. Although early in his faculty career, his consistent publication record, interdisciplinary projects, and translational research achievements suggest a trajectory of continued recognition in academic and industrial spheres. His awards are evidence of his leadership in innovation-driven materials science.

Publication Top Notes

Bioinspired Hierarchical Soft Gripper with Hexagonal and Suction Interfaces for Strain-Guided Object Handling

Year 2025

Biodegradable Adhesive Interfaces for Bioelectronic and Biomedical Applications

Year 2025

Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor

Year 2025

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing

Year 2022

Conclusion

Prof. Da Wan Kim’s impressive research record, interdisciplinary approach, and high-impact publications make him an excellent candidate for the Best Researcher Award. His innovative research focus and collaboration skills demonstrate significant potential for continued contributions to the field. With some additional emphasis on expanding his research scope, mentorship, and broader societal impact, Prof. Kim’s application would be even stronger. Overall, he is a strong contender for the award.

Atsushi Kakogawa | Robotics and Mechatronics | Best Researcher Award

Assoc. Prof. Dr Atsushi Kakogawa |  Robotics and Mechatronics | Best Researcher Award

Associate Professor at Ritsumeikan University, Japan

🌟 Atsushi Kakogawa, Ph.D., is an Associate Professor in Robotics at Ritsumeikan University, Japan. A pioneer in robotics, he excels in mobile robot design, mechanical systems, and embedded systems. Proficient in programming languages like C++, Python, and more, Dr. Kakogawa has a prolific career marked by teaching, research, and leadership in international robotics conferences.

Profile

scholar

Education🎓 

Doctor of Engineering, Ritsumeikan University, Japan, 2015.  Master of Engineering, Ritsumeikan University, Japan, 2012.  Bachelor of Engineering, Department of Robotics, Ritsumeikan University, Japan, 2010.

Experience💼

Associate Professor, Ritsumeikan University (2023–Present).  Lecturer and Visiting Assistant Professor at University of Waterloo (2017). Assistant Professor, Ritsumeikan University (2015–2019).

Awards and Honors🏆

KAKENHI Grants from Japan Society for the Promotion of Science. Shiga Prefecture Technology Promotion Subsidy (2022). Organizer and Editor roles in top IEEE conferences, including IROS and ICRA.

Research Focus🤖

Robotics: Mobile robot design and mechanical system applications.  Embedded systems and advanced Internet communication technologies.  Multidisciplinary programming in C++, Python, and SQL for robotics innovation.

Publication  Top Notes

Design of a Multilink-Articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints

Journal: Advanced Robotics, 2018

Citations: 73

Highlights: Introduces a pipeline robot leveraging passive elastic joints for adaptability in complex pipeline systems.

Mobility of an In-Pipe Robot with Screw Drive Mechanism Inside Curved Pipes

Conference: IEEE International Conference on Robotics and Biomimetics, 2010

Citations: 72

Highlights: Explores screw drive mechanisms for pipeline robots navigating curved environments.

Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved and Vertical Pipes

Journal: Advanced Robotics, 2012

Citations: 55

Highlights: Focuses on optimizing spring stiffness to enhance robot mobility in diverse pipe geometries.

Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes

Journal: Robotica, 2016

Citations: 50

Highlights: Discusses arm length designs crucial for overcoming vertical bends in pipelines.

An In-Pipe Robot with Underactuated Parallelogram Crawler Modules

Conference: IEEE International Conference on Robotics and Automation, 2014

Citations: 48

Highlights: Presents a robot with a novel crawler module enhancing adaptability and efficiency.

Design of a Multilink-Articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II

Conference: IEEE/RSJ Intelligent Robots and Systems, 2016

Citations: 46

Highlights: Develops AIRo-II, a wheeled robot optimized for winding and complex pipelines.

Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches

Conference: IEEE International Conference on Automation Science and Engineering, 2012

Citations: 42

Highlights: Proposes mechanisms for robots to autonomously navigate pipeline branches.

Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes

Conference: IEEE ISR, 2013

Citations: 41

Highlights: Focuses on screw drive robots overcoming pipeline bends and branches.

Underactuated Modular Finger with Pull-In Mechanism for a Robotic Gripper

Conference: IEEE Robotics and Biomimetics, 2016

Citations: 40

Highlights: Introduces a robotic gripper using an underactuated mechanism for enhanced grasping.

Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators

Journal: IEEE Robotics and Automation Letters, 2018

Citations: 39

Highlights: Examines stiffness optimization for snake robots in planar environments.

Conclusion

Dr. Atsushi Kakogawa is a highly accomplished researcher whose contributions to robotics and mechatronics make him a strong contender for the Best Researcher Award. His academic rigor, leadership in the robotics community, and innovation in mobile and embedded systems distinguish him as a trailblazer in his field. By addressing areas such as industrial collaboration and broader global recognition, he could solidify his position as a preeminent figure in robotics research.

Atsushi Kakogawa | Robotics and Mechatronics | Best Researcher Award Ritsumeikan University

Assoc. Prof. Dr Atsushi Kakogawa |  Robotics and Mechatronics | Best Researcher Award

Associate Professor at Ritsumeikan University, Japan

🌟 Atsushi Kakogawa, Ph.D., is an Associate Professor in Robotics at Ritsumeikan University, Japan. A pioneer in robotics, he excels in mobile robot design, mechanical systems, and embedded systems. Proficient in programming languages like C++, Python, and more, Dr. Kakogawa has a prolific career marked by teaching, research, and leadership in international robotics conferences.

Profile

scholar

Education🎓 

Doctor of Engineering, Ritsumeikan University, Japan, 2015.  Master of Engineering, Ritsumeikan University, Japan, 2012.  Bachelor of Engineering, Department of Robotics, Ritsumeikan University, Japan, 2010.

Experience💼

Associate Professor, Ritsumeikan University (2023–Present).  Lecturer and Visiting Assistant Professor at University of Waterloo (2017). Assistant Professor, Ritsumeikan University (2015–2019).

Awards and Honors🏆

KAKENHI Grants from Japan Society for the Promotion of Science. Shiga Prefecture Technology Promotion Subsidy (2022). Organizer and Editor roles in top IEEE conferences, including IROS and ICRA.

Research Focus🤖

Robotics: Mobile robot design and mechanical system applications.  Embedded systems and advanced Internet communication technologies.  Multidisciplinary programming in C++, Python, and SQL for robotics innovation.

Publication  Top Notes

Design of a Multilink-Articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints

Journal: Advanced Robotics, 2018

Citations: 73

Highlights: Introduces a pipeline robot leveraging passive elastic joints for adaptability in complex pipeline systems.

Mobility of an In-Pipe Robot with Screw Drive Mechanism Inside Curved Pipes

Conference: IEEE International Conference on Robotics and Biomimetics, 2010

Citations: 72

Highlights: Explores screw drive mechanisms for pipeline robots navigating curved environments.

Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved and Vertical Pipes

Journal: Advanced Robotics, 2012

Citations: 55

Highlights: Focuses on optimizing spring stiffness to enhance robot mobility in diverse pipe geometries.

Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes

Journal: Robotica, 2016

Citations: 50

Highlights: Discusses arm length designs crucial for overcoming vertical bends in pipelines.

An In-Pipe Robot with Underactuated Parallelogram Crawler Modules

Conference: IEEE International Conference on Robotics and Automation, 2014

Citations: 48

Highlights: Presents a robot with a novel crawler module enhancing adaptability and efficiency.

Design of a Multilink-Articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II

Conference: IEEE/RSJ Intelligent Robots and Systems, 2016

Citations: 46

Highlights: Develops AIRo-II, a wheeled robot optimized for winding and complex pipelines.

Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches

Conference: IEEE International Conference on Automation Science and Engineering, 2012

Citations: 42

Highlights: Proposes mechanisms for robots to autonomously navigate pipeline branches.

Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes

Conference: IEEE ISR, 2013

Citations: 41

Highlights: Focuses on screw drive robots overcoming pipeline bends and branches.

Underactuated Modular Finger with Pull-In Mechanism for a Robotic Gripper

Conference: IEEE Robotics and Biomimetics, 2016

Citations: 40

Highlights: Introduces a robotic gripper using an underactuated mechanism for enhanced grasping.

Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators

Journal: IEEE Robotics and Automation Letters, 2018

Citations: 39

Highlights: Examines stiffness optimization for snake robots in planar environments.

Conclusion

Dr. Atsushi Kakogawa is a highly accomplished researcher whose contributions to robotics and mechatronics make him a strong contender for the Best Researcher Award. His academic rigor, leadership in the robotics community, and innovation in mobile and embedded systems distinguish him as a trailblazer in his field. By addressing areas such as industrial collaboration and broader global recognition, he could solidify his position as a preeminent figure in robotics research.

Prof Philip F. Yuan | Robotic Fabrication | Best Researcher Award

Prof Philip F. Yuan | Robotic Fabrication | Best Researcher Award

Prof Philip F. Yuan , CAUP, Tongji University, China

Prof Philip F. Yuan is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Scopus

Yuan, Philip F.

Info:

Tongji University, Shanghai, China
56057067100

📖 Publications Top Note :

Agent-Based Principal Strips Modeling for Freeform Surfaces in Architecture
Chai, H., Orozco, L., Kannenberg, F., Menges, A., Yuan, P.F.
Nexus Network Journal, 2024, 26(2), pp. 369–396
Explores innovative modeling techniques in architecture utilizing agent-based methods.

Bioinspired Sensors and Applications in Intelligent Robots: A Review
Zhou, Y., Yan, Z., Yang, Y., Yuan, P.F., He, B.
Robotic Intelligence and Automation, 2024, 44(2), pp. 215–228
A comprehensive review of bioinspired sensor technologies and their applications in robotics.

FloatArch: A Cable-Supported, Unreinforced, and Re-Assemblable 3D-Printed Concrete Structure Designed Using Multi-Material Topology Optimization
Li, Y., Wu, H., Xie, X., Yuan, P.F., Xie, Y.M.
Additive Manufacturing, 2024, 81, 104012
Presents a pioneering design in 3D-printed concrete structures optimized for reusability and sustainability.

Structural Performance-Based 3D Concrete Printing for an Efficient Concrete Beam
Wu, H., Li, Y., Xie, X., Gao, X., Yuan, P.F.
Sustainable Development Goals Series, 2024, Part F2790, pp. 343–354
Discusses advancements in 3D printing for creating efficient concrete beams.

Research on 3D Printing Craft for Flexible Mass Customization: The Case of Chengdu Agricultural Expo Center
Gao, T., Gu, S., Zhang, L., Yuan, P.F.
Sustainable Development Goals Series, 2024, Part F2790, pp. 465–480
Examines flexible customization in 3D printing through a case study of an agricultural expo center.

Preface
Yan, C., Chai, H., Sun, T., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072
Introduction to the latest volume focusing on computational design and robotic fabrication.

The Use of Normative Energy Calculation for Natural Ventilation Performance-Driven Urban Block Morphology Generation
Li, W., Xu, X., Makvandi, M., Sun, Z., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072, pp. 315–328
Investigates energy-efficient urban design through computational methods.

A Parametric Approach Towards Carbon Net Zero in Agricultural Planning
Yueyang, W., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072, pp. 305–314
Focuses on achieving carbon neutrality in agricultural planning using parametric design techniques.

ISOMORPHISM: Stylized Translations of 2D Prototype in Additive Clay Printing
Gong, L., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072, pp. 515–525
Explores the translation of 2D designs into 3D printed clay structures.

Practical Application of Multi-Material Topology Optimization to Performance-Based Architectural Design of an Iconic Building
Li, Y., Ding, J., Zhang, Z., Yuan, P.F., Xie, Y.M.
Composite Structures, 2023, 325, 117603
Applies multi-material optimization in creating high-performance architectural designs.

Mr. Oveas Gholami | robotics | Best Researcher Award

Mr. Oveas Gholami | robotics | Best Researcher Award

Mr. Oveas Gholami,  University of Guilan, Iran

Mr. Oveas Gholami is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

📊 Citation Metrics (Google Scholar):

Citations by: All – 19, Since 2018 – 19

h-index: All – 2, Since 2018 – 2

i10 index: All – 1, Since 2018 –1