Mr. Bingtao Wang | Energy consumption model | Best Researcher Award

Mr. Bingtao Wang | Energy consumption model | Best Researcher Award

Mr. Bingtao Wang, Shan Dong University, China

Bingtao Wang, currently a Master’s student in Communication Engineering at Shandong University (Weihai), holds a Bachelor’s degree in Electronic Engineering. His research focuses on energy consumption models and fault diagnosis in mobile robots. Bingtao has led multiple innovative projects, including the development of a quadcopter UAV and a visual perception crawler robot. His significant contribution lies in the creation of robust energy models and diagnostic methods that enhance the efficiency and reliability of Three-Wheeled Omnidirectional Mobile Robots (TOMRs), paving the way for future advancements in autonomous navigation and robotics.

Professional Profiles:

Orcid

🎓 Academic and Professional Background (100 words max):

Bingtao Wang, male, was born in Liaocheng City, Shandong Province in September 2001. In 2023, he graduated from Shandong University (Weihai) with a Bachelor’s degree in Electronic Engineering. He is currently pursuing a Master’s in Communication Engineering at Shandong University (Weihai), College of Electrical and Engineering. His research focuses on energy consumption model building and fault diagnosis.

📝 Self-Declaration:

I authenticate that to the best of my knowledge the information given in this form is correct and complete. At any time, I am found to have concealed any material information, my application shall be liable to be summarily terminated without notice. I have read the terms and conditions and other policies of the Awards and agree to them.

✍️Publications Top Note :

Assist Prof Dr. Yun Li | Two-phase flow heat transfer | Best Researcher Award

Assist Prof Dr. Yun Li | Two-phase flow heat transfer | Best Researcher Award

Assist Prof Dr. Yun Li, Beijing Electro-Mechanical Engineering Institute, china

Assist Prof Dr. Yun Li is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

Professional Profiles:

Scopus

Personal Details: 🎓 

👤 Full Name: Yun Li🎓 Designation: Assistant Professor🏢 Institution/Organization: Beijing Electro-Mechanical Engineering Institute

Academic and Professional 

Yun Li earned an M.S. degree from Dalian University of Technology in 2018 and a Ph.D. from Shanghai Jiao Tong University in 2023. His research focused on phase-change water cooling of electronic components and flow boiling processes in microchannels. Since joining the Beijing Electro-Mechanical Engineering Institute in 2023, his work has centered on phase-change processes, thermal management of electronic and aerospace devices, and nuclear reactor safety. His research combines theoretical and experimental approaches, covering areas such as sensible and evaporative heating of thin films, pool boiling, flow boiling, jet-impingement cooling, and spray cooling.

Collaborations:

Applied for and completed a key international cooperation project at Shanghai Jiao Tong University in conjunction with Purdue University, named “Research on key scientific problems in high efficient phase change cooling technology for 3D stacked chips”.

Areas of Research:

Advanced microelectronic chip cooling theory and technologyMicro-energy power system and multiphase flow technologyEfficient heat and mass transfer theory and energy storage technologyMicro-nano-scale fluid flow and heat and mass transfer

📖 Publications Top Note :

Experimental investigation on flow boiling heat transfer characteristics in short flow passage counter-flow microchannels (International Journal of Thermal Sciences, 2024):

Study on the Effect of Flow Distribution on Flow Boiling in Counter-flow Microchannels (Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023):

Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels (International Journal of Heat and Mass Transfer, 2022):

Experimental investigation of flow boiling characteristics in counter-flow microchannels with different mass flux distributions (International Journal of Heat and Mass Transfer, 2022):

Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink (International Journal of Heat and Mass Transfer, 2022):