SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Dr. SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Postdoctoral Researcher, Sungkyunkwan University, South Korea

Dr. Samanth Kokkiligadda is a research professor in Chemical Engineering at Sungkyunkwan University, South Korea, specializing in sustainable energy solutions. With a Ph.D. in Physics, his expertise spans nanomaterials, energy storage, and biomass conversion. His work integrates biopolymers and flexible films to advance eco-friendly supercapacitors and photocurrent applications. Dr. Kokkiligadda has received prestigious awards, including the SKKU Innovation Research Fellowship and a gold medal in Chemistry. Proficient in nanomaterials functionalization, quantum dots, and electrochemical techniques, he contributes significantly to material synthesis and energy conversion research.

Profile

orcid

🎓 Education

Ph.D. in Physics (2019–2023), Sungkyunkwan University, South Korea 🏅 Dissertation: “Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors.” Awarded the Best SKKU Innovative Research Award. M.Sc. in Physics (2016–2018), P.B. Siddhartha College of Arts & Sciences, India 🎓 Specialization in Condensed Matter Physics with an 80% aggregate score. B.Sc. in M.P.C. (2013–2016), Krishna University, India 🏆 Graduated with 91.3%, earning a gold medal in Chemistry.

💼 Experience

BK21+ Postdoctoral Researcher, Sungkyunkwan University, South Korea (Present) 🔬 Researching DNA-based nanostructures for photocurrent and supercapacitor applications. Developing high-performance biopolymer-based energy storage devices. Graduate Researcher, Sungkyunkwan University, South Korea (2019–2023) 🧪 Conducted extensive studies on functional nanomaterials, quantum dots, and MXenes. Specialized in electrode synthesis for energy storage applications.

🏆 Awards & Honors 

SKKU Innovation Research Fellowship (BK21), 2022 🌟 All India 14th Rank, UGC Merit Scholarship, 2016-17 🏅Pratibha Award & Gold Medal in Chemistry, Krishna University, 2016 🏆 KU-SET 17th Rank, Andhra Pradesh University Entrance Test 🎖 2nd Prize in Photography, Cognition Nalanda University, 2018 📸 1st Prize in Quiz, Andhra Pradesh Librarian Association, Avanigadda 🏅

🔬 Research Focus 

Dr. Kokkiligadda’s research focuses on nanomaterials for energy storage and conversion. His work integrates DNA-based nanostructures, biopolymer synthesis, and flexible energy storage films. He explores quantum dots, MXenes, and hybrid biomaterials to develop high-performance, eco-friendly supercapacitors and photocurrent devices. His expertise spans scanning electron microscopy, spectroscopy techniques, thermal vapor deposition, and electrode fabrication for batteries and PEC applications.

Publications

“Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors” 🔋

“Synthesis of Biomass-based Hybrid Nanomaterials for Sustainable Energy Conversion” 🌱

“Functionalization of Quantum Dots for High-Performance Energy Devices” ⚡

“MXenes in Flexible Supercapacitors: A Novel Approach” 🏭

“Electrode Fabrication Techniques for Advanced Energy Storage” ⚙️

“Innovative DNA Nanostructures for Photovoltaic Applications”

Conclusion:

Samanth Kokkiligadda is a highly deserving candidate for the Best Researcher Award due to his exceptional contributions to nanomaterials, energy storage, and sustainable innovations. With his expertise and growing recognition, he has the potential to become a key figure in the future of green energy research. Strengthening collaborations and increasing high-impact publications will further solidify his standing as a top-tier researcher.

Yu-Fon Chen | Bio materials | Best Researcher Award

Assoc Prof Dr. Yu-Fon Chen  | Bio materials | Best Researcher Award

Associate Professor at National Taitung University, Taiwan

Yu-Fon Chen, Ph.D., is a prominent researcher with a strong foundation in medical laboratory science, microbiology, immunology, and biotechnology. Her work focuses on using natural polymers to develop innovative biomedical solutions, particularly in drug delivery systems targeting cancer cells and bacterial surfaces. With numerous publications, patents, and awards, Dr. Chen is recognized for reducing drug side effects and overcoming drug resistance.

Publication Profile

scholar

Education

Ph.D. in Life Sciences: National Cheng Kung University, Taiwan (2007–2014) M.S. in Microbiology and Immunology: National Cheng Kung University, Taiwan (2002–2004) B.S. in Medical Laboratory Science and Biotechnology: Chung Shan Medical University, Taiwan (1998–2002)

Experience

👩‍🏫 Faculty, Biomedicine Master’s Program: National Taitung University, Taiwan (2021–Present) Postdoctoral Researcher, Chemical Engineering: National Cheng Kung University, Taiwan (2015–2020 Assistant Research Fellow: AsiaGen Corporation, Taiwan (2005–2006) Certified Clinical Medical Technologist: Taiwan (2002)

Awards and Honors

🏆 Numerous awards for contributions in biomedical research Patents in drug delivery systems and non-viral gene delivery Recognized for innovative cancer-targeting treatments and overcoming drug resistance challenges Acknowledged in leading scientific communities for impactful publications

Research Focus

🔬 Exploration of natural polymers in biomedical applications Development of environment-responsive drug carriers Non-viral gene delivery methods
🧪 Design of peptide drugs targeting cancer and bacterial surface  Reducing drug side effects and overcoming resistance in cancer therapies

Publication  Top Notes

  • Star-shaped polypeptides exhibit potent antibacterial activities
    Authors: YF Chen, YD Lai, CH Chang, YC Tsai, CC Tang, JS Jan
    Journal: Nanoscale 11 (24), 11696-11708
    Year: 2019
    Citations: 64
  • Reduction-and pH-sensitive lipoic acid-modified Poly (l-lysine) and polypeptide/silica hybrid hydrogels/nanogels
    Authors: YX Zhang, YF Chen, XY Shen, JJ Hu, JS Jan
    Journal: Polymer 86, 32-41
    Year: 2016
    Citations: 59
  • Cell-targeted, dual reduction-and pH-responsive saccharide/lipoic acid-modified poly (L-lysine) and poly (acrylic acid) polyionic complex nanogels for drug delivery
    Authors: SC How, YF Chen, PL Hsieh, SSS Wang, JS Jan
    Journal: Colloids and Surfaces B: Biointerfaces 153, 244-252
    Year: 2017
    Citations: 38
  • TRAIL encapsulated to polypeptide-crosslinked nanogel exhibits increased anti-inflammatory activities in Klebsiella pneumoniae-induced sepsis treatment
    Authors: YF Chen, GY Chen, CH Chang, YC Su, YC Chen, Y Jiang, JS Jan
    Journal: Materials Science and Engineering: C 102, 85-95
    Year: 2019
    Citations: 35
  • Zhankuic acid A isolated from Taiwanofungus camphoratus is a novel selective TLR4/MD-2 antagonist with anti-inflammatory properties
    Authors: Y Chen, AL Shiau, SH Wang, JS Yang, SJ Chang, CL Wu, TS Wu
    Journal: The Journal of Immunology 192 (6), 2778-2786
    Year: 2014
    Citations: 28
  • Green synthesis of gold nanoparticle/gelatin/protein nanogels with enhanced bioluminescence/biofluorescence
    Authors: IH Chen, YF Chen, JH Liou, JT Lai, CC Hsu, NY Wang, JS Jan
    Journal: Materials Science and Engineering: C 105, 110101
    Year: 2019
    Citations: 27
  • Disulfide-cross-linked PEG-block-polypeptide nanoparticles with high drug loading content as glutathione-triggered anticancer drug nanocarriers
    Authors: YF Chen, CH Chang, CY Lin, LF Lin, ML Yeh, JS Jan
    Journal: Colloids and Surfaces B: Biointerfaces 165, 172-181
    Year: 2018
    Citations: 25
  • One-dimensional poly (L-lysine)-block-poly (L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis
    Authors: YF Chen, AL Shiau, SJ Chang, NS Fan, CT Wang, CL Wu, JS Jan
    Journal: Acta Biomaterialia 55, 283-295
    Year: 2017
    Citations: 25
  • Naturally derived DNA nanogels as pH-and glutathione-triggered anticancer drug carriers
    Authors: YF Chen, MW Hsu, YC Su, HM Chang, CH Chang, JS Jan
    Journal: Materials Science and Engineering: C 114, 111025
    Year: 2020
    Citations: 22
  • The JAK inhibitor antcin H exhibits direct anticancer activity while enhancing chemotherapy against LMP1-expressed lymphoma
    Authors: YF Chen, CH Chang, ZN Huang, YC Su, SJ Chang, JS Jan
    Journal: Leukemia & Lymphoma 60 (5), 1193-1203
    Year: 2019
    Citations: 19
  • Zhankuic acid A as a novel JAK2 inhibitor for the treatment of concanavalin A-induced hepatitis
    Authors: YF Chen, SH Wang, SJ Chang, AL Shiau, LS Her, GS Shieh, CF Chen, …
    Journal: Biochemical Pharmacology 91 (2), 217-230
    Year: 2014
    Citations: 19
  • The Constituents of Michelia compressa var. formosana and Their Bioactivities
    Authors: YY Chan, SH Juang, GJ Huang, YR Liao, YF Chen, CC Wu, HT Chang, …
    Journal: International Journal of Molecular Sciences 15 (6), 10926-10935
    Year: 2014
    Citations: 19
  • The Constituents of Roots and Stems of Illigera luzonensis and Their Anti-Platelet Aggregation Effects
    Authors: CH Huang, YY Chan, PC Kuo, YF Chen, RJ Chang, IS Chen, SJ Wu, …
    Journal: International Journal of Molecular Sciences 15 (8), 13424-13436
    Year: 2014
    Citations: 18
  • Enhancement of antitumor immune response by targeted interleukin-12 electrogene transfer through antiHER2 single-chain antibody in a murine bladder tumor model
    Authors: YS Tsai, AL Shiau, YF Chen, HT Tsai, HL Lee, TS Tzai, CL Wu
    Journal: Vaccine 27 (39), 5383-5392
    Year: 2009
    Citations: 16
  • Advances in the application of nanomaterials as treatments for bacterial infectious diseases
    Authors: YP Hung, YF Chen, PJ Tsai, IH Huang, WC Ko, JS Jan
    Journal: Pharmaceutics 13 (11), 1913
    Year: 2021
    Citations: 14
  • ZnO-loaded DNA nanogels as neutrophil extracellular trap-like structures in the treatment of mouse peritonitis
    Authors: YF Chen, YH Chiou, YC Chen, YS Jiang, TY Lee, JS Jan
    Journal: Materials Science and Engineering: C 131, 112484
    Year: 2021
    Citations: 12
  • Natural nanogels crosslinked with S-benzyl-L-cysteine exhibit potent antibacterial activity
    Authors: FY Chung, CR Huang, CS Chen, YF Chen
    Journal: Biomaterials Advances 153, 213551
    Year: 2023
    Citations: 7
  • Antioxidant activity of linear and star-shaped polypeptides modified with dopamine and glutathione
    Authors: CF Su, YF Chen, YJ Tsai, SM Weng, JS Jan
    Journal: European Polymer Journal 152, 110497
    Year: 2021
    Citations: 7
  • Effect of oil–water interface and payload-DNA interactions on payload-encapsulated DNA nanogels
    Authors: YF Chen, WC Lin, CJ Wu, CH Chang, JS Jan
    Journal: Journal of Polymer Research 29 (1), 8
    Year: 2022
    Citations: 6
  • Antibacterial activity of cysteine-derived cationic dipeptides
    Authors: YC Tsai, CC Tang, HH Wu, YS Wang, YF Chen
    Journal: International Journal of Peptide Research and Therapeutics 26, 1107-1114
    Year: 2020
    Citations: 6

Conclusion

Dr. Yu-Fon Chen exemplifies the qualities of a leading researcher through his extensive expertise, impactful research, and commitment to advancing biomedicine. His work in developing innovative drug delivery systems and peptide drugs holds great promise for addressing significant healthcare challenges. While there are opportunities for growth in collaboration and public engagement, his strengths far outweigh the areas for improvement. Dr. Chen’s dedication and achievements make him a strong candidate for the Best Researcher Award, as he continues to pave the way for advancements in biomedical applications and improve patient outcomes.

 

Karim Benhenia | Bio materials | Excellence in Research

Dr. Karim Benhenia | Bio materials | Excellence in Research

Dr at Biotechnology research center, Algeria

Dr. Karim Benhenia a veterinary science expert, completed their Doctorate in 2017 from the National School of Veterinary Medicine (ENSV) in El Harrache, Algeria, focusing on optimizing ram semen cryopreservation. They hold a Magister’s degree in bovine nutrition and reproduction, and have extensive experience in animal health and biotechnology research. Since 2019, Dr. Karim Benhenia has been leading the animal health team at the Biotechnology Research Center (CRBt) in Constantine and is a member of its scientific council. With years of professional experience, including teaching and working as a veterinarian,Dr. Karim Benhenia  contributes actively to advancements in veterinary science.

Publication Profile

scholar

Education

2019: Diploma of University Accommodation, ENSV El Harrache2017: Doctorate in Veterinary Sciences, ENSV El Harrache – Thesis: Optimization of Ram Semen Cryopreservation2011: Magister in Veterinary Sciences, specializing in Bovine Nutrition and Reproduction, ENSV El Harrache – Thesis: Freezing Technique of Bovine Embryos2007: Diploma in Artificial Insemination and Genetic Improvement2006: Doctor of Veterinary Medicine, University Hadj Lakhder, Batna2001: Baccalaureate in Natural and Life Sciences, Lycée Boumaaraf Mouhamed Lakhder, Khenchela
📜🎓🐄

Experience 

Since 2019: Animal Health Team Leader, Biotechnology Research Center (CRBt), ConstantineSince 2021: Member of the Scientific Council, CRBtResearcher A: Biotechnology Research CenterVisiting Lecturer: Department of Biology, University of KhenchelaVeterinarian: Municipality of Taouzient, KhenchelaVeterinarian: Municipality of Babar, KhenchelaVeterinarian: Municipality of Yabous, Khenchela2017-2018: Visiting Lecturer, Agro-Veterinary Institute, Souk Ahras
👩‍🔬🐾

Awards and Honors 

Dr. Karim Benhenia  has been recognized for their contribution to veterinary sciences and research in biotechnology. They have received accolades from the Biotechnology Research Center for their outstanding leadership in the animal health sector. Additionally Dr. Karim Benhenia  ‘s work in reproductive biotechnologies has earned them high regard in both academic and scientific communities. Their research efforts have led to innovations in cryopreservation techniques, improving the efficiency of artificial insemination and embryo freezing processes in livestock. Their membership in the CRBt’s scientific council further highlights their expertise and dedication to advancing veterinary biotechnology. 🏅🎖️🔬

Research Focus 

Dr. Karim Benhenia ‘s research centers on veterinary biotechnology, particularly in the areas of animal reproduction and cryopreservation. They have focused on optimizing semen and embryo freezing techniques to enhance the reproductive success of livestock species, with an emphasis on rams and bovines. Their research also extends to evaluating the oxidative status of sperm, viability assessments, and membrane functionality. In addition, Dr. Karim Benhenia is actively involved in biosafety and biosecurity within laboratory settings. They have contributed to training programs in biotechnology laboratories, particularly in the analysis and preparation of complex chemical compounds for reproductive biotechnology

 

Publication  Top Notes

Effect of Cyclodextrins, Cholesterol, and Vitamin E Complexation on Cryopreserved Epididymal Ram Semen (2016): This study, published in Small Ruminant Research, investigates how the complexation of cyclodextrins with cholesterol and vitamin E influences the cryopreservation outcomes of epididymal ram semen. The research demonstrates that these compounds can improve membrane integrity and motility, essential factors for semen viability post-thawing.

Beneficial and Harmful Effects of Cyclodextrin-Vitamin E Complex on Cryopreserved Ram Sperm (2018): Published in Animal Reproduction Science, this research further evaluates the dual nature of cyclodextrin-vitamin E complex on sperm quality during cryopreservation. While the complex enhances antioxidant properties, it also highlights potential adverse effects at higher concentrations, thus offering insight into optimizing sperm preservation techniques.

Complementary Effect of Cholesterol and Vitamin E Preloaded in Cyclodextrins on Frozen Bovine Semen (2018): In CryoLetters, Benhenia and colleagues analyze how loading cholesterol and vitamin E in cyclodextrins improves frozen bovine semen’s motility parameters and membrane integrity while reducing lipid peroxidation, advancing the field of bovine reproduction preservation.

Use of Rosmarinus officinalis Essential Oil Preloaded in β-Cyclodextrin on Ram Spermatozoa (2019): This work investigates the effect of rosemary essential oil complexed with β-cyclodextrin on sperm quality. The study highlights the benefits of using natural antioxidants to preserve sperm motility and membrane integrity, contributing to non-synthetic preservation methods.

Research on Local Algerian Livestock: Benhenia has also contributed to characterizing Algerian livestock, including studies on the morphogenetic traits of local goats (Livestock Research for Rural Development, 2021) and Arab-Barb horses (Revue Méd. Vét, 2018). These studies play a crucial role in understanding and preserving regional genetic resources.

Innovative Cryopreservation Techniques: His work extends to developing novel cryopreservation methods, such as the optimization of ram sperm cryopreservation through encapsulating antioxidants in cyclodextrins (École Nationale Supérieure Vétérinaire, 2021).

Other Contributions: Dr. Benhenia has investigated the impacts of partially substituting barley with olive-waste cake on ram reproduction performance (Acta Veterinaria Eurasia, 2022) and explored ultrasonography for gestational age determination in Arab-Barb mares.

Conclusion

The individual is a highly qualified candidate for the Excellence in Research Award. Their strong academic background, technical expertise in reproductive biotechnology, and leadership roles in research and education make them a standout contender. Their work has clear applications in livestock breeding and genetic improvement, which are important areas for advancing veterinary and agricultural sciences.

 

Hasi Rani Barai | Nanocomposite materials | Best Researcher Award

Assist Prof Dr. Hasi Rani Barai | Nanocomposite materials | Best Researcher Award

Assistant Professor at Yeungnam University, South Korea

Dr. Hasi Rani Barai is an accomplished Assistant Professor at Yeungnam University, Republic of Korea, specializing in materials science and nanotechnology. She completed her postdoctoral research in artificial photosynthesis at Sogang University and nanomaterials at Ewha Womans University. Dr. Barai has earned global recognition for her innovative work in energy storage devices and nanocomposite materials. She holds a Ph.D. from Inha University and has published extensively in high-impact journals. Her career is marked by a deep commitment to advancing materials engineering and green energy solutions.

Publication Profile

Education 🎓

Ph.D. (2010–2013): Inha University, South Korea, under Prof. H.W. Lee – Research in physical organic mechanisms, nanomaterials, and high-energy materials. M.S. (2006–2008): University of Dhaka, Bangladesh, under Prof. M. Muhibur Rahman – Specialized in laser spectroscopy and physical chemistry. B.Sc. (2000–2006): University of Dhaka, Bangladesh, under Prof. M. Muhibur Rahman – Studied chemistry with a focus on nanomaterials and spectroscopy.

Experience 🔬 

Assistant Professor (2015–present): Yeungnam University, South Korea – Leading research in nanocomposites, energy storage, and biosensors Postdoctoral Fellow (2013–2015): Sogang University, South Korea – Focused on artificial photosynthesis and nanocatalysts for CO2 reduction. Postdoctoral Fellow (2013): Ewha Womans University, South Korea – Researched nanoparticles for energy storage. Research Fellow: Expert in supercapacitors, electrochemistry, and MOFs.

Awards and Honors 🏅

KCAP Fellowship: Awarded for outstanding research in artificial photosynthesis and nanomaterials at Sogang University. Best Paper Award: Recognition for top-tier research publications in energy storage systems. International Research Grants: Secured multiple research grants to advance the field of nanotechnology and green energy. Young Scientist Award: Honored for innovative contributions in the field of materials science and energy devices.

Research Focus 🔍 

Materials Science & Engineering: Specializes in nanocomposites, supercapacitors, and biosensors. Electrochemistry & Energy Storage: Focus on supercapacitors, nanoparticles, and energy storage devices for sustainable technologies. Nanotechnology & Catalysis: Research in nanocatalysts, MOFs, and CO2 reduction for artificial photosynthesis. Green Energy: Leading innovations in renewable energy solutions using nanomaterials and advanced electrochemistry.

Publication  Top Notes

High-Performance Battery-Type Supercapacitors: Investigated the growth of nanorods/nanospheres on conductive frameworks for energy storage. ACS Applied Materials & Interfaces, July 2024. DOI: 10.1021/acsami.4c03109

Detection of Polymorphisms in FASN, DGAT1, and PPARGC1A Genes: Analyzed gene associations with milk yield and composition traits in river buffalo. Animals, June 2024. DOI: 10.3390/ani14131945

Conductive Gels for Energy Storage and Conversion: Studied design strategies for materials used in energy applications. Materials, May 2024. DOI: 10.3390/ma17102268

Antibiotic Resistance in Plant Pathogenic Bacteria: Discussed environmental impacts and biocontrol agents. Plants, April 2024. DOI: 10.3390/plants13081135

pH-Sensitive Hydrogel Membrane for Dye Water Purification: Developed sodium alginate/poly(vinyl alcohol) hydrogel for environmental applications. ACS ES&T Water, February 2024. DOI: 10.1021/acsestwater.3c00567

 

Conclusion

Dr. Hasi Rani Barai is highly suitable for the Best Researcher Award due to her remarkable achievements in the fields of nanocomposite materials, energy storage, and artificial photosynthesis. Her extensive academic and research career reflects excellence in innovative materials science, positioning her as a leading researcher in cutting-edge technologies that address global challenges. By fostering international collaborations and emphasizing applied research, Dr. Barai’s already stellar portfolio could reach even greater heights, making her a deserving candidate for this award.

Shiquan Lin | liquid-solid contact electrification | Best Researcher Award

Assoc Prof Dr. Shiquan Lin | liquid-solid contact electrification | Best Researcher Award

Professor at NBeijing Institute of Technology,  china

Assoc Prof Dr. Shiquan Lin, an Associate Research Fellow at the Beijing Institute of Nanoenergy and Nanosystems, CAS, is a distinguished researcher in contact electrification, triboelectric sensors, and nanoenergy devices. With over 30 papers published in high-impact journals and citations exceeding 3,000, he is making significant contributions to the fields of nanotechnology and energy harvesting. He earned his Ph.D. from Tsinghua University and completed postdoctoral research at the National Center for Nanoscience and Technology, China. His research focuses on designing sensors and devices using contact electrification principles for advanced applications.

Publication Profile

Scholar

Education 🎓

Ph.D. in Mechanical Engineering from Tsinghua University (2013.09–2018.07). During his doctoral studies, Assoc Prof Dr. Shiquan Lin focused on advanced mechanical systems, tribology, and nanotechnology, publishing research in top journals and developing expertise in contact electrification and smart sensing technologies. B.S. in Mechanical Engineering from the University of Science and Technology Beijing (2009.09–2013.07). His undergraduate experience laid the groundwork for his passion in engineering mechanics and materials science, sparking an interest in nanotechnology and energy devices that led to his graduate research.

Experience💼 

Associate Research Fellow at the Beijing Institute of Nanoenergy and Nanosystems, CAS (2020.10–present): Assoc Prof Dr. Shiquan Linleads research in contact electrification, smart sensors, and micro-actuators, contributing to groundbreaking technologies in nanoenergy. Postdoctoral Researcher at the National Center for Nanoscience and Technology, China (2018.07–2020.10): Assoc Prof Dr. Shiquan Lin deepened his research into triboelectric nanogenerators and semiconductor interfaces, publishing extensively and collaborating on advanced projects. Guest editor and young editorial board member of prestigious journals such as Friction and China Surface Engineering, contributing to the academic community.

Awards and Honors🏆

National Natural Science Foundation of China Grant No. 52375213 (2024.01–2027.12) National Natural Science Foundation of China Grant No. 52005044 (2021.01–2023.12)  Tribology Science Fund of the State Key Laboratory of Tribology in Advanced Equipment: No. SKLTKF23A02 (2024.01–2026.12) Recognized as a young editorial board member for Friction and China Surface Engineering, showcasing his leadership in the field of tribology and surface engineering.

Research Focus🔬

Assoc Prof Dr. Shiquan Lin specializes in the study of contact electrification and its applications in smart sensors and nanoenergy. His research explores charge transfer at solid-solid, liquid-solid, and semiconductor interfaces, with a focus on high-voltage, highly sensitive devices. He designs micro-actuators and liquid component analysis devices based on contact electrification principles, contributing to innovations in triboelectric nanogenerators and energy harvesting systems. His work has been published in leading journals, advancing the field of nanoscience

Publication  Top Notes

  • Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
    S. Lin, L. Xu, A. Chi Wang, Z.L. Wang, Nature Communications, 11 (1), 399 – 445 citations, 2020
  • Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface
    J. Nie, Z. Ren, L. Xu, S. Lin, F. Zhan, X. Chen, Z.L. Wang, Advanced Materials, 32 (2), 1905696 – 411 citations, 2020
  • Contact electrification at the liquid–solid interface
    S. Lin, X. Chen, Z.L. Wang, Chemical Reviews, 122 (5), 5209-5232 – 331 citations, 2021
  • Contributions of different functional groups to contact electrification of polymers
    S. Li, J. Nie, Y. Shi, X. Tao, F. Wang, J. Tian, S. Lin, X. Chen, Z.L. Wang, Advanced Materials, 32 (25), 2001307 – 280 citations, 2020
  • Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case
    S. Lin, L. Xu, C. Xu, X. Chen, A.C. Wang, B. Zhang, P. Lin, Y. Yang, H. Zhao, Advanced Materials, 31 (17), 1808197 – 237 citations, 2019
  • Electron transfer as a liquid droplet contacting a polymer surface
    F. Zhan, A.C. Wang, L. Xu, S. Lin, J. Shao, X. Chen, Z.L. Wang, ACS Nano, 14 (12), 17565-17573 – 188 citations, 2020
  • Charge pumping strategy for rotation and sliding type triboelectric nanogenerators
    Y. Bai, L. Xu, S. Lin, J. Luo, H. Qin, K. Han, Z.L. Wang, Advanced Energy Materials, 10 (21), 2000605 – 148 citations, 2020
  • The tribovoltaic effect and electron transfer at a liquid-semiconductor interface
    S. Lin, X. Chen, Z.L. Wang, Nano Energy, 76, 105070 – 123 citations, 2020
  • Electron transfer in nanoscale contact electrification: photon excitation effect
    S. Lin, L. Xu, L. Zhu, X. Chen, Z.L. Wang, Advanced Materials, 31 (27), 1901418 – 121 citations, 2019
  • Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors
    M. Zheng, S. Lin, L. Xu, L. Zhu, Z.L. Wang, Advanced Materials, 32 (21), 2000928 – 110 citations, 2020
  • Effects of surface functional groups on electron transfer at liquid–solid interfacial contact electrification
    S. Lin, M. Zheng, J. Luo, Z.L. Wang, ACS Nano, 14 (8), 10733-10741 – 107 citations, 2020
  • Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces
    J. Zhang, S. Lin, M. Zheng, Z.L. Wang, ACS Nano, 15 (9), 14830-14837 – 88 citations, 2021
  • Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface
    M. Zheng, S. Lin, Z. Tang, Y. Feng, Z.L. Wang, Nano Energy, 83, 105810 – 86 citations, 2021
  • Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators
    Z. Ren, Y. Ding, J. Nie, F. Wang, L. Xu, S. Lin, X. Chen, Z.L. Wang, ACS Applied Materials & Interfaces, 11 (6), 6143-6153 – 85 citations, 2019
  • Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single Crystals
    Q. Lai, L. Zhu, Y. Pang, L. Xu, J. Chen, Z. Ren, J. Luo, L. Wang, L. Chen, K. Han, ACS Nano, 12 (10), 10501-10508 – 79 citations, 2018
  • The overlapped electron‐cloud model for electron transfer in contact electrification
    S. Lin, C. Xu, L. Xu, Z.L. Wang, Advanced Functional Materials, 30 (11), 1909724 – 77 citations, 2020
  • A droplet-based electricity generator for large-scale raindrop energy harvesting
    Z. Li, D. Yang, Z. Zhang, S. Lin, B. Cao, L. Wang, Z.L. Wang, F. Yin, Nano Energy, 100, 107443 – 66 citations, 2022
  • Quantifying contact‐electrification induced charge transfer on a liquid droplet after contacting with a liquid or solid
    Z. Tang, S. Lin, Z.L. Wang, Advanced Materials, 33 (42), 2102886 – 58 citations, 2021
  • Bipolar charge transfer induced by water: experimental and first-principles studies
    S. Lin, T. Shao, Physical Chemistry Chemical Physics, 19 (43), 29418-29423 – 47 citations, 2017
  • Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid–solid contacting
    J. Zhang, S. Lin, Z.L. Wang, ACS Nano, 17 (2), 1646-1652 – 45 citations, 2023

Conclusion

Overall, this candidate demonstrates excellence in research, publication, and academic leadership. Their contributions to contact electrification and nanotechnology are impactful, and their work has gained significant attention in the scientific community. By enhancing their international collaborations and expanding the practical applications of their research, they could further solidify their status as a top candidate for the Best Researcher Award. Their strong funding track record, combined with their editorial roles, makes them a highly competitive nominee for this prestigious recognition.

Md Mahfuzur Rahman | Cellulose | Best Researcher Award

Dr.  Bangladesh University of Textiles, Bangladesh

I am currently pursuing a B.Sc. degree in Textile Engineering with a specialization in Industrial and Production Engineering at the Bangladesh University of Textiles (BUTEX) in Bangladesh. Since 2018, I have been working as a research assistant at both BUTEX and North South University (NSU). My research interests include Nanomaterials & Nanomechanics, Semiconductor Electrophysics, Magnetic Materials, Wearable Smart Textiles, Biomedical applications, Thin Film Magnetism, First-principle DFT studies, and Engineered 2D Quantum Materials. I have previously conducted research on ferrite nanomaterials, synthesizing and characterizing their properties, as well as sustainable textiles. I have recently been working on smart textiles and experimental and DFT analysis of perovskite materials. Moreover, I actively participated in various clubs, including BUTEX Sports Club and BUTEX Youth Development Club, which honed my leadership and event management skills. From an early age, mathematics has been my favorite subject, and I have actively participated in the Bangladesh Mathematical Olympiad, achieving two awards. Additionally, in 2016, I secured the 12th position in the Bangladesh Physics Olympiad. I also participated at Asian Pacific Mathematical Olympiad. My penchant for creative endeavors inspired my research journey, which began in my first year of undergraduate studies.

Professional Profiles:

🎯 Career Objective

I aim to be a valuable professional contributing to institutions and society through creative and impactful research. Seeking a research-oriented position to leverage my knowledge and skills, I thrive in challenging environments that foster continuous learning. My passion lies in Material Science related research.

🎓 Education

Bangladesh University of Textiles, Dhaka, BangladeshB.Sc. in Textile Engineering (Specialization in Industrial & Production Engineering) (2018-2023)CGPA: 3.16/4Rajshahi Govt. City College, Rajshahi, BangladeshHigher Secondary Certificate (2017)GPA: 5/5Agrani School and College, Rajshahi, BangladeshSecondary School Certificate (2015)GPA: 5/5

💻 Technical Qualifications

Computer Skills

C, Python, MS Office, OriginLab Software, FullProf Software, Imagej, CAD, CATIA, CASTEP, SolidWorks

Experimental Techniques

X-ray Diffraction (XRD), FTIR, FESEM, Transmission Electron Microscopy, UV-Visible Spectroscopy, Vibrating Sample Magnetometer, Universal Testing Machine, TGA, DTA

Theoretical Techniques

Rietveld Analysis, DFT Investigation, Stress and Displacement Analysis

🔬 Research Interests

Wearable Smart TextilesBiomedicalNanomaterials & NanomechanicsSemiconductor Electro-physicsAdditive ManufacturingThin Film MagnetismFirst-Principle DFT StudyPhotovoltaics

Strengths for the Award:

  • Research Contributions: The researcher should have a strong portfolio of impactful publications, such as high-quality journal articles, conference papers, or patents, that have significantly contributed to their field.
  • Innovation: The researcher’s work should demonstrate a high level of innovation, leading to new discoveries or advancements in technology, methodology, or understanding in their area of expertise.
  • Collaboration and Leadership: The researcher should have a track record of leading or collaborating on interdisciplinary projects, demonstrating their ability to work with a diverse range of experts.
  • Recognition and Awards: Previous recognition through awards, grants, or invitations to speak at conferences can highlight the researcher’s influence and reputation in their field.
  • Impact on Society: The research should have a tangible impact on society, such as applications in industry, policy changes, or contributions to solving real-world problems.

Areas for Improvement:

  • Broader Impact: While the researcher may have made significant contributions to a specific field, they may need to expand the reach of their work to have a broader impact across multiple disciplines.
  • Communication and Outreach: The ability to communicate research findings to a non-specialist audience, including the general public, policymakers, or industry stakeholders, is increasingly important. Improvement in this area could enhance the visibility and impact of their work.
  • Diversity and Inclusion: The researcher could focus more on mentoring underrepresented groups in their field or engaging in initiatives that promote diversity and inclusion in science and research.
  • Sustainability and Ethics: Depending on the research field, the researcher may need to incorporate more sustainable practices or address ethical considerations in their work.

✍️Publications Top Note :

Cellulose Fiber from Jute and Banana Fiber:

Publication: “Physical properties of isolated cellulose fiber from jute and banana fiber through kraft pulping: Potential applications in packaging and regenerated fibers.”

Journal: SPE Polymers (2024).

Focus: Investigation of the physical properties of cellulose fibers derived from jute and banana through kraft pulping. The study explores potential applications in packaging and the development of regenerated fibers.

Electromagnetic Properties of Al3+ Substituted Ni–Co Ferrites:

Publication: “Rietveld refined structural and sintering temperature dependent electromagnetic properties of Al3+ substituted Ni–Co ferrites prepared through sol–gel auto combustion method for high-frequency and microwave devices.”

Journal: Journal of Materials Science: Materials in Electronics (2024).

Focus: This research delves into the electromagnetic properties of Al3+ substituted Ni-Co ferrites, emphasizing their application in high-frequency and microwave devices.

Triboelectric Nanogenerators:

Publication: “Carbon-based Textile structured Triboelectric Nanogenerators for Smart Wearables.”

Status: Preprint (2024).

Focus: Development of carbon-based textile triboelectric nanogenerators aimed at powering smart wearable devices.

Magnetic and Optoelectronic Properties of Ni-Cu Spinel Ferrites:

Publication: “Magnetic, optoelectronic, and rietveld refined structural properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites: An experimental and DFT based study.”

Journal: Journal of Magnetism and Magnetic Materials (2023).

Focus: Study of the magnetic, optoelectronic, and structural properties of Ni-Cu spinel ferrites, including experimental and theoretical (DFT) approaches.

Dielectric and Electrical Transport in Ni-Cu Spinel Ferrites:

Publication: “Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol–gel route.”

Journal: Results in Physics (2022).

Focus: Analysis of dielectric and electrical transport properties in Al3+ substituted Ni-Cu spinel ferrites synthesized using the sol-gel method.

Structural and Magnetic Properties of Ni-Zn Ferrites:

Publication: “Structural, magnetic, and electrical properties of Ni0.38−xCu0.15+yZn0.47+x−yFe2O4 synthesized by sol–gel auto-combustion technique.”

Journal: Journal of Materials Science: Materials in Electronics (2021).

Conclusion:

  • Suitability for the Award: Based on the evaluation of strengths and areas for improvement, the researcher appears highly suitable for the “Best Researcher Award.” Their significant contributions to their field, coupled with a track record of innovation and leadership, make them a strong candidate.
  • Final Recommendation: While the researcher is highly qualified, they could further enhance their candidacy by expanding the impact of their work, engaging more with the broader community, and contributing to initiatives that promote diversity and sustainability in research.

Zhenghui Luo | organic solar cells | Best Researcher Award

Assoc Prof Dr. Shenzhen University, China

Dr. Luo Zhenghui, born in October 1991 in Wuhan, Hubei Province, is an Associate Professor at Shenzhen University, specializing in organic optoelectronic functional materials. He completed his PhD in Organic Chemistry at Wuhan University under the supervision of Professor Yang Chuluo, with joint training at the Institute of Chemistry, Chinese Academy of Sciences. Dr. Luo has published over 100 SCI papers, with 26 recognized as ESI Highly Cited Papers. His research focuses on the design and synthesis of non-fullerene acceptor materials and organic photovoltaic devices. He has received multiple awards, including recognition as a Clarivate Analytics Highly Cited Scientist.

 

Professional Profiles:

Education:

PhD in Organic Optoelectronic Functional Materials, Wuhan UniversitySupervisor: Professor Yang ChuluoJoint Training: Institute of Chemistry, Chinese Academy of Sciences (Academician Li Yongfang)Research Direction: Design, synthesis, and photovoltaic device research of non-fullerene acceptor materials

Research Focus:

Organic photovoltaic materials and devicesPreparation and optimization of organic photovoltaic devicesDesign and synthesis of non-fullerene acceptor materials

Key Achievements:

Published over 100 SCI papers since May 2016.26 papers selected as ESI Highly Cited Papers and 26 as ESI Hot Topics.Total citations exceed 8,000 (H-index: 51 on Google Scholar).First author or corresponding author on 54 papers, including top journals like Joule, Advanced Materials, Angewandte Chemie International Edition, and Energy & Environmental Science.Awarded for outstanding research contributions, including the 2020 Cell Press Chinese Scientist Best Paper Award in Material Science and selection as a Clarivate Analytics Highly Cited Scientist for multiple years.

Awards:

Top 2% of the world’s top scientists in Environment, Energy, and Sustainability journals for three consecutive years (2021-2023).Second prize winner in Guangdong Province and Shenzhen City Natural Science Award in 2022.

Strengths for the Award

1. Exceptional Publication Record: Luo Zhenghui has published over 100 SCI papers since May 2016, with 26 being selected as ESI Highly Cited Papers and 26 as ESI Hot Topics. His research output demonstrates both quality and impact, with a Google Scholar H-index of 51 and over 8,000 citations. His work in high-impact journals such as Advanced Materials, Angewandte Chemie, Joule, and Nature Communications underscores his contributions to the field of organic optoelectronic functional materials.

2. Expertise in Organic Photovoltaic Materials: Luo’s research focuses on organic photovoltaic materials and devices, particularly the design, synthesis, and application of non-fullerene acceptor materials. His innovative work in this area has led to significant advancements, including the development of polymer solar cells with efficiencies exceeding 17%. His expertise in molecular design and device engineering is evident in his numerous high-impact publications.

3. Recognition and Awards: Luo has received several prestigious awards, including the Cell Press Chinese Scientist Best Paper Award (First Place in Material Science) and the Outstanding Paper Award from Science China Chemistry. His recognition as a Clarivate Analytics Highly Cited Scientist and inclusion in the top 2% of the world’s top scientists further solidifies his standing in the scientific community.

4. Collaborative and Interdisciplinary Research: Luo has successfully collaborated with leading researchers and institutions, including joint training with the Institute of Chemistry, Chinese Academy of Sciences, and research at the Hong Kong University of Science and Technology. His interdisciplinary approach has contributed to his success in advancing organic optoelectronics and photovoltaic research.

Areas for Improvement

1. Diversification of Research Focus: While Luo’s focus on organic photovoltaic materials has yielded significant results, diversifying his research portfolio could enhance his contributions to other emerging areas within organic optoelectronics. Expanding into related fields such as organic light-emitting diodes (OLEDs) or organic semiconductors could further strengthen his overall research impact.

2. Increased Industry Collaboration: To translate his research into practical applications, Luo could benefit from increased collaboration with industry partners. Engaging in technology transfer and commercialization efforts could amplify the societal impact of his research, particularly in the development and deployment of organic photovoltaic technologies.

3. Outreach and Mentorship: Luo could consider increasing his involvement in outreach and mentorship activities. Guiding the next generation of researchers and actively participating in scientific outreach could enhance his visibility and influence within the broader scientific community.

 

✍️Publications Top Note :

Fine-tuning energy levels via asymmetric end groups – This paper reports on polymer solar cells achieving efficiencies over 17% through the fine-tuning of energy levels using asymmetric end groups. Published in Joule in 2020, it has been cited 367 times.

Improving open-circuit voltage by a chlorinated polymer donor – This study demonstrates how a chlorinated polymer donor can improve the efficiency of binary organic solar cells to over 17%. Published in Science China Chemistry in 2020, with 328 citations.

A layer-by-layer architecture for printable organic solar cells – This research addresses the challenge of module efficiency in organic solar cells by using a layer-by-layer architecture. It was published in Joule in 2020 and has 317 citations.

Precisely controlling the position of bromine on the end group – This work explores how the precise positioning of bromine on polymer acceptors can lead to solar cells with efficiencies over 15%. It was published in Advanced Materials in 2020 and has been cited 311 times.

Fine-tuning molecular packing and energy level through methyl substitution – This paper focuses on methyl substitution for fine-tuning molecular packing, leading to efficient nonfullerene polymer solar cells. Published in Advanced Materials in 2018, it has 292 citations.

Use of two structurally similar small molecular acceptors – The study shows how using two structurally similar acceptors can enable high-efficiency ternary organic solar cells. Published in Energy & Environmental Science in 2018, it has 280 citations.

Asymmetrical ladder-type donor-induced polar small molecule acceptor – This research promotes fill factors approaching 77% in high-performance nonfullerene polymer solar cells. Published in Advanced Materials in 2018, it has 273 citations.

16% efficiency all-polymer organic solar cells – The paper reports on achieving a 16% efficiency in all-polymer organic solar cells via a finely tuned morphology. Published in Joule in 2021, with 243 citations.

Simultaneous enhanced efficiency and thermal stability – This work demonstrates enhanced efficiency and thermal stability in organic solar cells using a polymer acceptor additive. Published in Nature Communications in 2020, it has 239 citations.

A nonfullerene acceptor with a 1000 nm absorption edge – This study discusses the development of a nonfullerene acceptor leading to improved efficiencies in organic solar cells. Published in Energy & Environmental Science in 2019, with 229 citations.

Conclusion

Luo Zhenghui is an outstanding candidate for the Best Researcher Award, with a proven track record of high-impact research, numerous accolades, and significant contributions to the field of organic optoelectronic functional materials. His expertise in organic photovoltaic materials, coupled with his collaborative and interdisciplinary approach, positions him as a leader in his field. While there is potential for further growth in diversifying his research focus and increasing industry collaboration, Luo’s achievements to date make him a highly deserving recipient of this prestigious award.

Dhanraj Shinde | Microbial fuel cells | Best Researcher Award

Dr. Dhanraj Shinde | Microbial fuel cells | Best Researcher Award

Dr. National Chemical Laboratory, Pune, Maharastra, India

Dr. Dhanraj B. Shinde, with over 15 years of research experience, is a Ramalingaswami fellow and Assistant Professor at the National Chemical Laboratory, India. He specializes in nanomaterials synthesis, proton conductive membranes, chemical vapor deposition, and energy storage devices. He has held postdoctoral positions at New Mexico State University, USA, and Monash University, Australia, contributing significantly to graphene production and microbial fuel cells. Dr. Shinde earned his Ph.D. in Physical and Materials Chemistry from the University of Pune, India. His numerous accolades include the Ramanujan Fellowship and the Australian Alumni Research Grant.

 

Professional Profiles:

Education🎓

Ph.D. in Physical and Materials ChemistryNational Chemical Laboratory (NCL), University of Pune, India (2008 – 2013)Thesis: “Electrochemical Synthesis and Functionalization of Carbon-based Nanomaterials”Supervisor: Dr. K. Vijayamohanan, IISER Tirupati, India🎓 M.Sc. in ChemistryYeshwant College, Department of Chemistry, Swami Ramanand Teerth Marathwada University Nanded, Maharashtra, India (May 2006)🎓 B.Sc. in ChemistryMahatma Gandhi College, Ahmedpur, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India (May 2004)

Fellowships and Awards

🏅 Fellowships:

Senior Research Fellowship, CSIR, New Delhi (January 2010 to December 2012)Junior Research Fellowship, CSIR, New Delhi (January 2008 to December 2009)Ramanujan Fellowship, SERB (2021)Ramalingaswami Re-entry Fellowship, DBT (2021)

🏆 Awards:

KRISHNAN AWARD for Best Published Research Paper in Physical Chemistry / Materials Science (2011 & 2013)Best Thesis Award “KEERTHI SANGORAM MEMORIAL ENDOWMENT AWARD” (2012)Young Associate Award, Maharashtra Academy of Sciences (2019)Australian Alumni Research Grant (2022)

Objective🚀

Career Goal: Intend to build a career in a leading institution with committed and dedicated people, helping to explore my potential. Willing to work as a key player in a challenging and creative environment.

Research Experience🔬

15+ Years of Research Experience:Nanomaterials synthesisProton conductive membranesChemical vapor depositionRedox flow batteriesFuel cells and energy storage devices

Current Position🏢

National Chemical Laboratory, IndiaRamalingaswami Fellow and Assistant Professor, A-CSIR (May 2021 – Present)Project: High power density microbial fuel cells: Conversion of waste into electricity and chemicalsGrant: Australian Alumni research grant to develop cost-effective microbial fuel cells (2022)

Previous Positions🌐

New Mexico State University, USAPostdoctoral Research Associate (November 2016 – 2020)Large area single crystalline graphene production using atmospheric pressure chemical vapor depositionBreakthrough proton conductive membranes based on two-dimensional materials for microbial fuel cells and redox flow battery applications🌏 Monash University, AustraliaPostdoctoral Research Associate (December 2013 – 2016)High-quality graphene manufacturing and upscaling through flow chemistry approachesLarge area graphene oxide membranes for water desalination

Strengths for the Award:

Extensive Research Experience: Over 15 years of hands-on experience in advanced material synthesis and energy storage technologies.Innovative Contributions: Pioneering work in microbial fuel cells and cost-effective solutions for renewable energy.Proven Track Record: Multiple prestigious fellowships and awards showcasing a history of excellence and significant impact in the field.Strong Academic and Professional Background: Advanced degrees and notable positions in esteemed institutions worldwide.

Areas for Improvement:

Industry Collaboration: Increasing collaborations with industry partners to translate research findings into commercial applications.Funding Acquisition: Securing additional funding to expand research capabilities and explore new avenues.Public Outreach: Enhancing efforts to communicate scientific discoveries to the general public and policymakers to foster greater understanding and support.

Conclusion:

Dr. Dhanraj B. Shinde is a highly accomplished researcher with a formidable background in nanomaterials, fuel cells, and renewable energy technologies. His extensive experience, coupled with a proven track record of innovation and excellence, makes him a strong candidate for the Best Researcher Award. With continued focus on industry collaboration, funding acquisition, and public outreach, Dr. Shinde is well-positioned to drive significant advancements in sustainable energy solutions.

✍️Publications Top Note :

Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework
Das, G., Shinde, D.B., Melepurakkal, A., El-Roz, M., Trabolsi, A.
ChemThis link is disabled.

Unique role of dimeric carbon precursors in graphene growth by chemical vapor deposition
Shinde, D.B., Chaturvedi, P., Vlassiouk, I.V., Smirnov, S.N.
Carbon Trends, 5, 100093

Exclusively Proton Conductive Membranes Based on Reduced Graphene Oxide Polymer Composites
Shinde, D.B., Vlassiouk, I.V., Talipov, M.R., Smirnov, S.N.
ACS Nano, 13(11), 13136–13143

Development of CdZn(SSe)2 thin films by using simple aqueous chemical route: Air annealing
Jagadale, S.K., Shinde, D.B., Mane, R.M., Mane, R.K., Bhosale, P.N.
Materials Today: Proceedings, 4(2), 363–368

Low temperature simple aqueous phase chemical synthesis and characterization of ZnO thin films
Shinde, D.B., Ghanwat, V.B., Khot, K.V., Mane, R.K., Bhosale, P.N.
Materials Today: Proceedings, 4(2), 119–125

Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework
Pachfule, P., Shinde, D., Majumder, M., Xu, Q.
Nature Chemistry, 8(7), 718–724

Shear Assisted Electrochemical Exfoliation of Graphite to Graphene
Shinde, D.B., Brenker, J., Easton, C.D., Neild, A., Majumder, M.
Langmuir, 32(14), 3552–3559

Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide
Akbari, A., Sheath, P., Martin, S.T., Bhattacharyya, D., Majumder, M.
Nature Communications, 7, 10891

Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction
Shinde, D.B., Dhavale, V.M., Kurungot, S., Pillai, V.K.
Bulletin of Materials Science, 38(2), 435–442

Graphene nanoribbons as prospective field emitter
Khare, R., Shinde, D.B., Bansode, S., Pillai, V.K., Late, D.J.
Applied Physics Letters, 106(2), 023111

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian , Northwestern Polytechnical University, China

Dr. Jie Jian is a distinguished PostDoc in Materials Science at Northwestern Polytechnical University, specializing in photoelectrodes and photocatalysts. With expertise in nanomaterial synthesis and advanced film processing technologies, Dr. Jian has significantly contributed to the field through innovative research and optimization strategies. His academic journey includes a PhD and M.S. from NPU, focusing on BiVO4-nanocrystals and SiC ceramic composites, respectively, and a B.S. from Chongqing University. Dr. Jian has also gained industry experience as an engineer at Samsung Semiconductor. His work is characterized by a profound understanding of material characterization and software proficiency.

 

Professional Profiles:

Google Scholar

 

🌟 Technical-Scientific Skills 🌟

Mastering Preparation, Testing, and Characterization of photoelectrodes (photoanodes and photocathodes) and photocatalysts, proposing optimization strategies based on photoelectrochemical principles.Expert in Synthesis of Nanomaterials using pulsed laser irradiation in liquid and wet-chemical methods, and proficient in the design, synthesis, and functional exploration of porous materials.Film Processing Technologies: Skilled in spin coating, dip coating, chemical baths, electrodeposition, magnetron sputtering, and ALD.Material Characterization: Proficient in TEM, SEM, AFM, Raman, BET, UV-vis, XPS, XRD, FTIR.Software Proficiency: Photoshop, 3D-Max, Origin, Endnote, VESTA, Gatan, CAD, ChemDraw, Athena.

📚 Academic Education and Career 📚

03/2022-present
PostDoc in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Project: In-situ Embedding Nanocrystals/Clusters in Porous Materials for Efficient Photo(electro)catalysis09/2016-03/2023
PhD in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Thesis Title: Laser Derived Films of BiVO4-Nanocrystals for Efficient Photoelectrochemical Water Splitting04/2015-08/2016
Engineer, Samsung (China) Semiconductor Co., Ltd., Xi’an, China (SCS)
Task: Process controlling and equipment monitoring during chemical vapor deposition.09/2012-03/2015
M.S. in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Laifei Cheng
Thesis Title: Strengthening and Toughening of Laminated (SiCp+SiCw)/SiC Ceramic Composites09/2008-07/2012
B.S. in Materials Science and Engineering, Chongqing University (CQU)
Supervisor: Prof. Baifeng Luan
Thesis Title: Study on deformation structure and texture of pure zirconium with large grain size rolled at liquid nitrogen temperature
GPA: 3.55/4
Ranking: 3/72

📖 Publications Top Note :

Embedding Laser-Generated Nanocrystals in BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
J Jian, Y Xu, X Yang, W Liu, M Fu, H Yu, F Xu, F Feng, L Jia, D Friedrich, …
Nature Communications 10 (1), 2609 (2019)
Citations: 160

Recent Advances in Rational Engineering of Multinary Semiconductors for Photoelectrochemical Hydrogen Generation
J Jian, G Jiang, R van de Krol, B Wei, H Wang
Nano Energy 51, 457-480 (2018)
Citations: 160

Black BiVO4: Size Tailored Synthesis, Rich Oxygen Vacancies, and Sodium Storage Performance
X Xu, Y Xu, F Xu, G Jiang, J Jian, H Yu, E Zhang, D Shchukin, S Kaskel, …
Journal of Materials Chemistry A 8 (4), 1636-1645 (2020)
Citations: 67

Porous CuBi2O4 Photocathodes with Rationally Engineered Morphology and Composition Towards High-Efficiency Photoelectrochemical Performance
Y Xu, J Jian, F Li, W Liu, L Jia, H Wang
Journal of Materials Chemistry A 7 (38), 21997-22004 (2019)
Citations: 61

Ordered Porous BiVO4 Based Gas Sensors with High Selectivity and Fast-Response Towards H2S
C Li, X Qiao, J Jian, F Feng, H Wang, L Jia
Chemical Engineering Journal 375, 121924 (2019)
Citations: 59

Mr. Jeremy Jeba amuel J | Composite materials | Best Researcher Award

Mr. Jeremy Jeba amuel J | Composite materials
| Best Researcher Award

Mr. Jeremy Jeba amuel J , Francis Xavier Engineering College, India

Mr. Jeremy Jeba amuel J is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Google scholar

Orcid

🌟 Objective:

To seek a challenging and responsible position in an emerging organization with a competitive environment, leading the organization to excellence through high efficiency and innovative skills. Aim to provide the best quality and innovation in my work.

🎓 Educational 

DegreeYear of PassingPercentageInstitution Name
Ph.D (Pursuing)–Easwari Engineering College
M.E (Engineering Design)201571.1%Easwari Engineering College
B.E (Mechanical Engineering)201366.66%Dr. Sivanthi Adithanar College of Engineering
T.N.H.S.C200969%Margoschis Hr. Sec. School
SSLC200779%Margoschis Hr. Sec. S

Work Experience:

Institution NameFromToTotal Experience
Francis Xavier Engineering College, Tirunelveli24/06/2015Till Date6 years 8 months

Skill-set:

Languages: C, C++
Operating Systems: Windows 10
Packages: MS-Office, Origin
Tools: AutoCAD, Pro-E (Creo), CATIA, Ansys, Fluid sim, CNC Programmin

Industrial Exposure:

Undergone In-plant training at DCW Ltd and Sterlite Copper for two weeks.
Undergone In-plant training at TVS Motor Company for three days.
Visited various industries like Hyundai – Chennai, Doosan Power Systems, Aqua-Sub, Madras Radiators Pvt Ltd, and interacted with HRs regarding placement.

Technical Training:

Participated in numerous Faculty Training Programmes organized by various reputed institutions.
Attended seminars, webinars, and workshops from different institutions.

Achievements:

Secured First place in state-level project presentation competition conducted by Velammal College of Engineering & Technology, Madurai.
Secured Second place in national-level CAD Modelling conducted by Holycross Engineering College, Vagaikulam.
Secured Second place in national-level paper presentation competition conducted by SRM University – Ramapuram, Chennai.
Secured awards from the institution for achieving 100% results.
Coordinated a 1-week FDP sponsored by Anna University from 3rd Jan to 8th Jan 2022 under the title ME 8493 – Thermal Engineering 1.

📖 Publications Top Note :

Studies on Mechanical Properties and Characterization of Carbon Fiber Reinforced Hybrid Composite for Aerospace Application

Authors: J.J.J. Samuel, R. Ramadoss, K.N. Gunasekaran, K. Logesh, S.J.P. Gnanaraj, …

Journal: Materials Today: Proceedings

Volume: 47, pp. 4438-4443

Year: 2021

Citations: 27

An Experimental Study of the Properties of Carbon Fiber/Epoxy Composites Mixed with Rubber Granules

Authors: J.J.S. Joseph Jebaraj, R. Rajendran

Journal: International Journal of Polymer Science

Volume: 2024 (1), Article ID 5555592

Year: 2024

Green Methods of Larvae Control in Aquatic Environments: Using Solar Energy to Agitate Water

Authors: D.E. Paulsyah, S.J.P. Gnanaraj, R.S. Myrtle, C.J.C. Grace, J.J.J. Samuel

Conference: 2023 International Conference on Sustainable Communication Networks and …

Year: 2023

Vacuum Bag Technology for Obtaining Carbon/Epoxy Composites

Authors: M.J.J.S.J. Ajith Arumugam A, Karthikeyan S, Godlin S.R., Giftson Gnanaraj J

Journal: International Journal of Innovative Research in Science, Engineering and …

Year: 2021

Experimental Investigation on Fabrication Methods of Glass Fibre with Rubber Powder for Radome Applications

Authors: J.J.S.J. Esakki Raja, Anand K, Elson Pushpa M, Ganeshamanikandan C

Journal: Journal of Xidian University

Volume: 14 (Issue 5, 2020), pp. 894-900

Year: 2020

Fracture Analysis of Compact Tension Specimen

Authors: M.J.J.S. Mr. S. Sheik Sulaiman, Mr. K. Krishna Moorthy

Journal: International Journal of Research in Advanced Technology – IJORAT

Volume: 1 (9), pp. 49-55

Year: 2016

Performance Study on Hybrid Glass Fiber Epoxy Composite

Authors: M.J. Lakshmipathy, J. Jereme Jeba Samuel

Journal: International Journal of Research in Advanced Technology – IJORAT

Volume: 1 (1), pp. 18-22

Year: 2016

Study of Mechanical Properties and Characterization of Hybrid Polymer Matrix Composites Based on Water Absorption

Authors: S.S.P.J. Jeremy Jeba Samuel, Lakshmipathy

Journal: International Journal of Research in Advanced Technology – IJORAT

Volume: 1 (1), pp. 36-40

Year: 2016

Mechanical Properties and Characterization Studies in Natural Fiber/Lignite Fly Ash Reinforced Hybrid Composites

Authors: S.K. G.K., K.G. Ashok

Journal: Journal of Manufacturing Engineering

Volume: 10 (3), pp. 157-160

Year: 2015

An End for Cancer by Nanotechnology

Authors: (Details not provided)