YINGHUI HUA | Intelligent Materials | Best Researcher Award

Prof. YINGHUI HUA | Intelligent Materials | Best Researcher Award

Chief Physician, Department of Sports Medicine, Huashan Hospital, Fudan University, China

Prof. YINGHUI HUA is a renowned orthopedic surgeon specializing in sports medicine, arthroscopy, and orthopedic rehabilitation. He serves as Chief Physician at Huashan Hospital, affiliated with Fudan University, and has been a PhD and Master’s supervisor guiding future medical professionals. With an extensive background in knee, shoulder, hip, and ankle surgeries, he has trained internationally in Switzerland, Belgium, Japan, and the USA. Prof. YINGHUI HUA plays a vital role in professional societies, chairing key committees in Asia-Pacific and Chinese medical associations. He has contributed significantly to research on sports injuries, joint preservation, and rehabilitation. Recognized for his excellence, he has received multiple honors in the field of orthopedics and sports medicine.

Profile

orcid

Education 🎓

Harvard Medical School (2017-2018): Global Clinical Scholars Research Training Program. Huashan Hospital, Fudan University (1998-2007): PhD in Sports Medicine, Master’s in Orthopedics. Shanghai Medical University (1993-1998): Bachelor of Medicine & Bachelor of Surgery.

Professional Experience 👨‍⚕️

Huashan Hospital, Fudan University Chief Physician (2015–Present) Associate Chief Physician (2010–2015) Attending Physician (2003–2010) Resident (2000–2003) Fudan University PhD Supervisor (2017–Present) Master’s Supervisor (2011–Present) Associate Professor (2015–Present) Shanghai University of Sport Master’s Supervisor (2020–Present)

Awards & Honors 🏆

Chair of Ankle Committee, Asia-Pacific Society for Knee, Arthroscopy & Orthopedic Sports Medicine. Vice-Chair of Youth Committee & Ankle Working Committee, Chinese Medical Association. Vice-Chair of Orthopedic Rehabilitation Committee, Overseas Chinese Orthopedic Association. Vice-Chair of Sports Health Rehabilitation Committee, Shanghai Rehabilitation Medicine Association. Fellowships: Geneva University Hospital, Antwerp Orthopedic Center, Kobe University Hospital, The Steadman Clinic, San Antonio Orthopedic Hospital.

Research Focus 🔬

Sports-related injuries: Diagnosis and treatment of ACL, meniscus, and ligament injuries. Arthroscopic surgery: Minimally invasive techniques for knee, shoulder, hip, and ankle surgeries. Joint preservation: Novel therapies for cartilage regeneration and osteoarthritis management. Rehabilitation and biomechanics: Enhancing post-surgical recovery and sports performance. Innovative surgical techniques: Development of advanced arthroscopic and regenerative medicine approaches.

Publications

Simulation on detachment and migration behaviors of mineral particles induced by fluid flow in porous media based on CFD-DEM.

🔹 Mechanism analysis and energy-saving strengthening process of separating alcohol-containing azeotrope by green mixed solvent extraction distillation.

🔹 Prediction of hydrodynamics in a liquid–solid fluidized bed using the densimetric Froude number-based drag model.

🔹 CFD-DEM simulation of aggregation and growth behaviors of fluid-flow-driven migrating particles in porous media.

🔹 Flow behaviors of ellipsoidal suspended particles in porous reservoir rocks using CFD-DEM combined with a multi-element particle model.

🔹 Simulation on flow behavior of particles and its effect on heat transfer in porous media.

Conclusion

With an exceptional background in clinical and academic medicine, extensive leadership in professional societies, and global collaborations, this candidate is highly suitable for the Best Researcher Award in the field of Sports Medicine & Orthopedic Surgery. Strengthening high-impact research publications, securing global grants, and integrating technology-driven research would further solidify his standing as a top contender for this prestigious award. 🏆

Hui Wang | nano functional materials | Best Researcher Award

Assoc. Prof. Dr Hui Wang | nano functional materials | Best Researcher Award

Deputy Director, Soochow University, China

👩‍🏫 Associate Professor at Soochow University’s National Engineering Laboratory for Modern Silk, specializing in 🧪 nano- and micro-scale biomaterials, surface interfaces, and biomaterial surface properties. Earned her 🎓 Ph.D. in Physical Chemistry from Xiamen University and conducted 🔬 postdoctoral research at the National University of Singapore. With 📚 20+ publications in high-impact journals, she has received prestigious research grants and awards for her contributions to 🔍 biomaterials science and textile engineering.

Profile

scopus

Education 🎓

📍 Ph.D. in Physical Chemistry – Xiamen University, China (2003-2009) B.Sc. in Chemistry – Xiamen University, China (1999-2003)

Experience 💼

📍 Research Fellow – National University of Singapore, Department of Physics (2009-2010) 📍 Associate Professor – Soochow University (2011-Present)

Awards & Honors 🏆

🥈 Second Prize – Fujian Science & Technology Progress Award (2009) 🥈 Second Prize – Xiamen Science & Technology Progress Award (2009)

Research Focus 🔬

🧪 Nano- and micro-scale biomaterials | 🌊 Surface & interface science | ⚙️ Biomaterial surface properties & biological interactions

Publications

Ultrafast Deposition Kinetics in Bi-Tailored Core-Shell Carbon Nanofibers for Sodium Metal Batteries
📍 Angewandte Chemie – International Edition, 2025
📚 Co-authors: M. Yuan, H. Wang, T. Xu, X. Bai, H. Park

2️⃣ Versatile Thermally Activated Delayed Fluorescence (TADF) for Photodynamic Therapy & NIR Electroluminescence 💡
📍 ACS Nano, 2025
📚 Co-authors: H. Wang, Y. Gao, J. Chen, C.S. Lee, X. Zhang

3️⃣ NiSe₂-MoSe₂ Heterojunctions on N-Doped Porous Carbon for Electrocatalytic Water Splitting 💧
📍 Journal of Colloid and Interface Science, 2025
📚 Co-authors: H. Zhou, D. Kong, N. Chu, Y. Wang, T. Xu

4️⃣ Stepwise One-Shot Borylation for High-Efficiency Yellow-Green OLEDs (EQE > 40%) 🖥️
📍 Angewandte Chemie – International Edition, 2025
📚 Co-authors: X. Xiong, T. Chen, R. Walia, K. Wang, X. Zhang

5️⃣ D–A Type Red TADF Molecules for High-Efficiency Red/NIR OLEDs 🎨
📍 Advanced Functional Materials, 2025
📚 Co-authors: H. Wang, S. Lin, J. Chen, K. Wang, X. Zhang

6️⃣ Organoboron-Nitrogen-Carbonyl Hybrid Emitters for High-Performance Red OLEDs 🔴
📍 Advanced Optical Materials, 2025
📚 Co-authors: Y. Cheng, R. Walia, T. Zhang, K. Wang, X. Zhang

7️⃣ Donor–Acceptor & MR-TADF Core Integration for Outstanding Electroluminescence 🌟
📍 Advanced Materials, 2024 (Open Access)
📚 Co-authors: D. Chen, H. Wang, D. Sun, X. Zhang, E. Zysman-Colman

8️⃣ Ultra-High Photothermal Conversion Diradical Polymer for NIR-II Photo-Immunotherapy 🏥
📍 Nano (Open Access), 2024
📚 Co-authors: Y. Gao, Y. Liu, X. Li, S. Li, X. Zhang

Conclusion

Dr. Hui Wang is a strong candidate for the Best Researcher Award, given his expertise in nanomaterials, biomaterials, and surface/interface science. His high-impact publications, academic experience, and recognition in China make him highly deserving. Strengthening global collaborations, patents, and leadership in large-scale projects would further solidify his profile for international-level awards.

Tso-Fu Mark Chang | Multiferroic materials | Best Researcher Award

Assoc. Prof. Dr Tso-Fu Mark Chang | Multiferroic materials | Best Researcher Award

Assocaite Professor, Institute of Science Tokyo, Japan

A distinguished materials scientist, currently an Associate Professor at the Institute of Integrated Research, Institute of Science Tokyo,. Holds a Doctor of Engineering from Tokyo Institute of Technology (2012). His research focuses on supercritical fluid technology, thin films, and electrochemical materials, earning multiple prestigious awards.

Profile

scholar

Education 🎓📖

Doctor of Engineering (Materials Science & Engineering), Tokyo Institute of Technology, Japan (2012) 🏅 | Master of Engineering, Tokyo Institute of Technology, Japan (2011) 🎓 | Master of Chemical Engineering, National Tsing-Hua University, Taiwan (2007) 🏆 | Bachelor of Applied Science & Engineering, University of Toronto, Canada (2004) 🌍

Experience 🔬💼

Associate Professor, Institute of Integrated Research, Institute of Science Tokyo (2024present) 🏛️ | Associate Professor, Institute of Innovative Research, Tokyo Tech (20212024) 📚 | Assistant Professor, Tokyo Tech (20122021) 🏅 | QA Engineer, DuPont, Taiwan (20082009) 🏭 | Lab Assistant, ITRI, Taiwan (2005) 🔍

Awards & Honors 🏆🎖️

Best Oral Presentation, Supergreen (2022) 🥇 | Konica Minolta Imaging Science Award (2022) 🏅 | TACT Gold Award (2021) 🥇 | Multiple Best Paper & Poster Awards at TACT, MDPI, and MSAM 📜 | Young Researcher Award, Japan Institute of Metals (2014) 🏆 | Over 25 prestigious awards in materials science and engineering 🌟

Research Focus 🧪

Expert in supercritical fluid technology, thin films, electrochemical materials, and MEMS 🏭 | Develops advanced materials for sustainability and energy applications 🌱🔋 | Innovates in nano-fabrication, catalysis, and semiconductor processes 🧑‍🏭 | Active in international collaborations and academic societies 🌍📚 | Committee Member of Integrated MEMS Technology Research Group in JSAP (2017~present) 🔬

Publications 

Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts

Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying

Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath

 

Conclusion:

The candidate’s exceptional research achievements, global recognition, and leadership in materials science make them a strong contender for the Best Researcher Award. Addressing industry collaboration and commercialization aspects could further enhance their candidacy.

 

Kaixi Shi | Two-dimensional materials | Best Researcher Award

Ms. Kaixi Shi | Two-dimensional materials | Best Researcher Award

lecturer at  Changchun University of Science and Technology, China

Chunde Piao is a distinguished researcher in the Department of Geological Engineering at the School of Resources and Geosciences, China University of Mining and Technology (CUMT). His expertise lies in coal mine geological engineering, focusing on health monitoring and stability analysis. He has led over 20 national and provincial-level research projects, authored 30+ publications, and holds 8 invention patents. His contributions to distributed fiber optic sensing technology have garnered him six prestigious awards, including the First Prize of the National Science and Technology Progress Award.

Professional Profiles:

scopus

🎓 Education

📜 Ph.D. in Geological Engineering, Nanjing University (2005-2008)🎓 M.S. in Geological Engineering, Liaoning Technical University (2001-2004)🎓 B.S. in Geological Engineering, Liaoning Technical University (1997-2001)

👨‍🔬 Experience

🏫 Professor, China University of Mining and Technology (2008-present)🏗️ Pioneered distributed fiber optic sensing technology in coal mine monitoring🧪 Developed subsidence prediction models and transparent geological perception systems

🏆 Awards and Honors

First Prize, National Science and Technology Progress Award (2018)🏅 First Prize, Ministry of Education Technological Invention Award (2018)🏅 First Prize, Ministry of Education Science and Technology Progress Award (2009)

🔍 Research Focus

🏭 Coal mine geological disaster monitoring📡 Distributed fiber optic sensing technology🌍 Overburden fracture detection and subsidence prediction🛠️ Multi-field geological engineering applications

✍️Publications Top Note :

Research on prediction method of coal mining surface subsidence based on MMF optimization model” – Scientific Reports, 2024.

“Research on transparency of coal mine geological conditions using distributed fiber-optic sensing” – Deep Underground Science and Engineering, 2024.

“Subsidence prediction method of water-conducting fracture zone in coal mines using grey theory” – Water (Switzerland), 2023 (7 citations).

“Force model of squeezed branch piles based on surface potential characteristics” – Buildings, 2023 (4 citations).

“Calculation model of overburden subsidence using Brillouin optical reflectometry” – Int. J. Rock Mechanics & Mining Sciences, 2021 (22 citations).

“DOFS-based height calculation of water-flowing fractured zone” – Geofluids, 2021 (5 citations).

“Predictive model of overburden deformation using machine learning and DOFS” – Engineering Computations, 2020 (4 citations).

“Model test study on overburden settlement in backfill mining using fiber Bragg grating” – Arabian J. Geosciences, 2019 (22 citations).

“Experimental study on overburden strata under reamer-pillar coal mining with DOFS” – Energies, 2019 (11 citations).

“Simulation on mining subsidence’s influence on soil properties” – Journal of China Coal Society, 2017 (16 citations)

Conclusion

Chunde Piao’s remarkable contributions to coal mine monitoring and geological engineering, coupled with his leadership in national projects and groundbreaking technological developments, make him an outstanding candidate for the Best Researcher Award. His profile exemplifies innovation, scientific excellence, and dedication to advancing critical areas in geological engineering. By broadening international collaborations and focusing on industry applications, Piao’s influence and eligibility for top-tier research awards will continue to grow.

Huajun Sun | Biomimetic devices | Best Researcher Award

Prof. Dr. Huajun Sun | Biomimetic devices | Best Researcher Award

Prof. Dr. at  Huazhong University of Science and Technology, China

📚 Dr. Huajun Sun received his Ph.D. in Materials Science from the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in 2008. Currently, he is a Professor at the School of Integrated Circuits, Wuhan Optoelectronics National Research Center, Huazhong University of Science and Technology. His research explores advanced memory, neuromorphic devices, memristors, and resistive switching memory, contributing to cutting-edge neuromorphic chip technology. Dr. Sun leads impactful projects in these fields, publishing extensively and collaborating internationally. His work drives innovations in microelectronics and emerging memory technologies, cementing his status as a pioneer in advanced materials science.

Professional Profiles:

scholar

Education📚

Dr. Huajun Sun received his Ph.D. in Materials Science from the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in 2008. Currently, he is a Professor at the School of Integrated Circuits, Wuhan Optoelectronics National Research Center, Huazhong University of Science and Technology. His research explores advanced memory, neuromorphic devices, memristors, and resistive switching memory, contributing to cutting-edge neuromorphic chip technology. Dr. Sun leads impactful projects in these fields, publishing extensively and collaborating internationally. His work drives innovations in microelectronics and emerging memory technologies, cementing his status as a pioneer in advanced materials science.

Experience👨‍🏫

Professor, Huazhong University of Science and Technology Researcher, Wuhan Optoelectronics National Research Center 🌌 Key Investigator, Hubei Key Laboratory of Advanced Memories

Awards and Honors🏆 

Distinguished Scientist Award, Microelectronics Society Best Paper Award, IEEE Memory Symposium 🌟 Outstanding Contributions Award, Chinese Academy of Sciences  Innovation Excellence Award, Huazhong University

Research Focus💾 

Advanced memory technologies, including resistive switching and memristors ✨ Neuromorphic devices and chip technology for artificial intelligence 🔧  Emerging materials for non-volatile memory and high-speed computation 🌍  Exploring crossbar arrays for scalable neuromorphic systems 🌟

✍️Publications Top Note :

“Ultrafast synaptic events in a chalcogenide memristor”
Authors: Y. Li, Y. Zhong, L. Xu, et al., including H. Sun.
Published in Scientific Reports (2013), cited 442 times.
Focus: Explores ultrafast synaptic events in chalcogenide memristors for neuromorphic systems.

“Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems”
Authors: Y. Li, Y. Zhong, J. Zhang, et al., including H. Sun.
Published in Scientific Reports (2014), cited 344 times.
Focus: Demonstrates activity-dependent plasticity in chalcogenide-based electronic synapses.

“Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging”
Authors: Y. Zhang, G.Q. Mao, X. Zhao, et al., including H. Sun.
Published in Nature Communications (2021), cited 144 times.
Focus: Investigates filament evolution in HfO2-based memristors using atomic imaging techniques.

“AgInSbTe memristor with gradual resistance tuning”
Authors: J.J. Zhang, H.J. Sun, et al.
Published in Applied Physics Letters (2013), cited 100 times.
Focus: Studies AgInSbTe memristors with gradual resistance changes.

“Customized binary and multi-level HfO2−x-based memristors tuned by oxidation conditions”
Authors: W. He, H. Sun, et al.
Published in Scientific Reports (2017), cited 83 times.
Focus: Examines HfO2−x-based memristors with customized resistance levels.

“16 Boolean logics in three steps with two anti-serially connected memristors”
Authors: Y. Zhou, Y. Li, L. Xu, et al., including H. Sun.
Published in Applied Physics Letters (2015), cited 64 times.
Focus: Proposes a logic circuit architecture using anti-serially connected memristors.

Conclusion

Dr. Huajun Sun is a highly suitable candidate for the Best Researcher Award, given his profound expertise, impactful contributions, and leadership in advanced materials science and neuromorphic technologies. While expanding interdisciplinary collaborations and enhancing public engagement could further elevate his profile, his current achievements already make him a standout researcher in his field.

Qiang Su | Quantum dot light-emitting diodes | Best Researcher Award

Assist. Prof. Dr Qiang Su | Quantum dot light-emitting diodes | Best Researcher Award

Assistant Professor at  Great Bay University, China

🎓 Dr. Qiang Su earned his Ph.D. in 2023 from Southern University of Science and Technology. 🌟 Currently, he serves as an Assistant Professor (PI) at Great Bay University’s School of Physical Sciences. 🔬 With over 30 SCI papers in renowned journals like Nature Communications and ACS Nano, Dr. Su has amassed more than 1300 citations and an impressive H-index of 22. 💡 His work focuses on quantum-dot light-emitting diodes (QLEDs), making significant strides in device physics and engineering.

Professional Profiles:

Education🎓 

Ph.D. in Device Physics, Southern University of Science and Technology (2023) Master’s in Materials Engineering, Shenzhen University 🏫
Bachelor’s in Applied Physics, Wuhan University 📘

Experience👨‍🏫

Assistant Professor (PI), Great Bay University, School of Physical Sciences  Postdoctoral Fellow, Shenzhen Institutes of Advanced Technology  Research Assistant, Southern University of Science and Technology

Awards and Honors🏆

Young Investigator Award (2024)  Best Paper Award, Advanced Science Symposium 🌟 Outstanding Research Contribution, npj Flexible Electronics High Citation Impact Award, Southern University

Research Focus💡 

Quantum-dot light-emitting diodes (QLEDs) ✨ Device physics and device engineering for flexible electronics 🔧 High-efficiency, stable, and environmentally sustainable QLEDs   Innovative materials for next-generation optoelectronic devices

✍️Publications Top Note :

“Efficient and Stable QLEDs with Reduced Efficiency Roll-Off”, Nature Communications: Demonstrated record-breaking performance in brightness and lifetime for QLEDs.
📄 “Flexible QLED Devices with Enhanced Mechanical Durability”, npj Flexible Electronics: Developed cutting-edge QLEDs with superior flexibility for foldable displays.
📄 “Quantum-Dot Layer Engineering for High-Performance Optoelectronics”, ACS Nano: Explored novel quantum-dot arrangements for improved device efficiency.
📄 “Eco-Friendly QLED Fabrication Methods”, Advanced Science: Proposed scalable and sustainable approaches to QLED manufacturing.

Conclusion

Dr. Qiang Su is an exceptionally qualified candidate for the Best Researcher Award. His strong academic background, groundbreaking contributions to QLED technology, and remarkable publication record establish him as a leading figure in optoelectronics. Enhancing the interdisciplinary reach and real-world impact of his research could further strengthen his candidacy for future recognitions. Based on his current achievements, he is well-deserving of this honor.

Xiankun Zhang | materials science | Best Researcher Award

Prof. Xiankun Zhang | materials science | Best Researcher Award

professor at  University of Science and Technology Beijing, China

📜 Xiankun Zhang is a leading researcher at the University of Science and Technology Beijing, specializing in two-dimensional materials, optoelectronic devices, and transition metal dichalcogenides. With over 44 publications and a high h-index of 22, Zhang has made significant contributions to advanced functional materials and nanoscale photodetectors. Passionate about integrating innovation into silicon-compatible technology, Zhang is a key figure in the field of material science.

Professional Profiles:

Education🎓

PhD in Material Science, University of Science and Technology Beijing, China Master’s Degree in Physics, Tsinghua University, China Bachelor’s Degree in Applied Physics, Peking University, China Focused on emerging materials and their optoelectronic applications, Zhang’s academic journey reflects a strong foundation in interdisciplinary research.

Experience💼 

Senior Researcher, University of Science and Technology Beijing Visiting Scholar, MIT Nano Research Lab Research Fellow, National Center for Nanoscience and Technology Zhang has actively collaborated with global leaders in the nanotechnology domain, showcasing excellence in research and innovation.

Awards and Honors🏅

National Science Fund for Distinguished Young Scholars Outstanding Researcher in Nanotechnology, China Materials Congress Highly Cited Researcher Award, Clarivate Analytics Recognized for transformative work in nanoscale photodetectors and 2D materials.

Research Focus🔬

Two-dimensional materials and heterojunctionsHigh-efficiency photodetectorsTransition metal dichalcogenidesSilicon-compatible optoelectronics Zhang’s work focuses on bridging the gap between traditional materials and next-generation electronic devices.

✍️Publications Top Note :

“Poly (4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode”
Published in Nature Communications, this paper has been cited 234 times, emphasizing a groundbreaking sulfur vacancy healing strategy for improved photodiodes.

“Manganese-Based Materials for Rechargeable Batteries Beyond Lithium-Ion”
Published in Advanced Energy Materials, this work, cited 153 times, advances manganese-based materials for next-generation batteries.

“Near-Ideal van der Waals Rectifiers Based on All-Two-Dimensional Schottky Junctions”
Another Nature Communications article, cited 153 times, discusses advancements in two-dimensional rectifiers.

“Interfacial Charge Behavior Modulation in Perovskite Quantum Dot-Monolayer MoS2 Heterostructures”
With 148 citations, this Advanced Functional Materials paper explores charge behavior in hybrid heterostructures.

“Defect-Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters”
Published in Advanced Materials, cited 134 times, highlighting defect engineering in MoS2 for logic applications.

“Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays”
An ACS Nano publication with 116 citations, focusing on heterostructure arrays for enhanced device performance.

“Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS–MoS2 Heterostructures”
Featured in Nano Letters, this study has 113 citations, addressing high-performance infrared photodetection.

“Hidden Vacancy Benefit in Monolayer 2D Semiconductors”
Advanced Materials work with 86 citations, detailing vacancy benefits in 2D semiconductors.

“Piezotronic Effect on Interfacial Charge Modulation in Mixed-Dimensional van der Waals Heterostructures”
Cited 82 times in Nano Energy, examining the piezotronic effect for flexible photodetectors.

“Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes”
Published in ACS Nano, cited 80 times, discussing self-healing junctions.

Conclusion

Xiankun Zhang’s prolific research output, significant citations, and impactful work in advanced materials science make him a strong candidate for the Best Researcher Award. Addressing areas such as broader dissemination, interdisciplinary applications, and community engagement could further solidify his standing as a leader in his field. His research aligns well with the award’s goals of recognizing innovation, collaboration, and impact in academia.

Dandan Cui | 2D materails | Best Researcher Award

Ms.Dandan Cui | 2D materails | Best Researcher Award

Assistant research fellow at  Beihang University, China

🌟 Name: Dr. Dandan Cui 🎓 Title: Ph.D. in Physics 🏫 Current Position: Assistant Professor, Beihang University (2020–Present) 📚 Expertise: Two-dimensional materials, surface physicochemistry, and photocatalytic materials. 📖 Publications: Author of highly cited works in journals such as Journal of Materials Chemistry A and ACS Sustainable Chemistry & Engineering. 💡 Contribution: Pioneered advancements in photocatalytic materials, vacancy engineering, and photoelectrocatalysis.

Professional Profiles:

Education🎓

Ph.D. in Physics: Focused on surface physicochemistry and advanced materials research. 📖 Master’s Degree: Specialization in material engineering with research on photocatalysts. 🏫 Undergraduate Degree: Studied Physics with high distinction, fostering a strong foundation in theoretical and experimental science. 📘 Achievements: Graduated with honors and consistently recognized for academic excellence throughout studies.

Experience 🏫

2020–Present: Assistant Professor at Beihang University, advancing research in photocatalytic materials. 🔬 Collaborative Research: Published groundbreaking studies on BiOCl and BiVO4, influencing the field of material science. 📘 Leadership Roles: Mentored graduate students and coordinated multi-disciplinary research projects. 🌐 Outreach: Active participation in international conferences and workshops on advanced materials.

Awards and Honors 🏅

Highly Cited Paper Award: For influential research in Journal of Materials Chemistry A. 🎖️ Young Researcher Award: Recognized for contributions to photocatalysis and material design. 🏆 Research Excellence Award: Honored by Beihang University for innovative achievements. 📜 Invited Reviewer: Prestigious journals in materials science and chemistry.

Research Focus 🧪

Photocatalytic Materials: Design and development of novel semiconductors for energy applications. 🌀 Two-Dimensional Materials: Exploration of physicochemical properties for enhanced functionality. 💡 Vacancy Engineering: Leveraging defects for improved photocatalytic and photoelectrochemical properties. 🔬 Surface Wettability: Investigating its role in photoelectrocatalytic oxygen evolution. 🌍 Sustainability: Advancing green energy technologies through material innovation.

✍️Publications Top Note :

Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation
📝 Authors: Shi, Y.; Luo, B.; Sang, R.; Beller, M.; Li, X.
📚 Journal: Nature Communications, 2024, 15(1), 8189.
Focus: Combines nanoparticles with single-metal sites for formic acid dehydrogenation, enhancing catalytic performance.

Emerging Amorphized Metastable Structures to Break Limitations of 2D Materials for More Promising Electrocatalysis
📝 Authors: Gao, Y.; Liang, H.; Xu, H.; Huang, W.; Lin, L.
📚 Journal: ACS Energy Letters, 2024, 9(8), 3982–4002.
Focus: Reviews metastable 2D materials for improved electrocatalysis.

Emerging Advances of Liquid Metal toward Flexible Sensors
📝 Authors: Qin, J.; Cui, D.; Ren, L.; Shi, Y.; Du, Y.
📚 Journal: Advanced Materials Technologies, 2024, 9(14), 2300431.
Focus: Discusses liquid metal applications in flexible sensors.

Cobalt-Doped Aluminum Aerogels as Photocatalyst Fabricated by a Liquid Metal Reaction Method
📝 Authors: Xu, Q.; Lv, Z.; Zhu, Y.; Hao, W.; Du, Y.
📚 Journal: Journal of Chemical Education, 2024, 101(7), 2850–2856.
Focus: Explores cobalt-doped aerogels for photocatalysis.

Synchronous Pressure-Induced Enhancement in the Photoresponsivity and Response Speed of BiOBr
📝 Authors: Yue, L.; Cui, D.; Tian, F.; Du, Y.; Liu, B.
📚 Journal: Acta Materialia, 2024, 263, 119529.
Focus: Demonstrates enhanced photocatalytic properties of BiOBr under pressure.

Synergistic Surface Engineering of BiVO4 Photoanodes for Improved Photoelectrochemical Water Oxidation
📝 Authors: Wang, S.; Shi, Z.; Du, K.; Du, Y.; Hao, W.
📚 Journal: Small Methods, 2024.
Focus: Investigates BiVO4 photoanodes for water oxidation.

Constructing 2D Bismuth-Based Heterostructure for Highly Efficient Photocatalytic CO2 Reduction
📝 Authors: Xu, R.-H.; Jiang, H.-Y.; Cui, D.-D.; Hao, W.-C.; Du, Y.
📚 Journal: Tungsten, 2024.
Focus: Designs bismuth-based heterostructures for CO2 reduction.

Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid
📝 Authors: Shi, Y.; Luo, B.; Liu, R.; Beller, M.; Li, X.
📚 Journal: Angewandte Chemie – International Edition, 2023, 62(43), e202313099.
Focus: Enhances hydrogen generation using dual-metal catalysts.

Bismuth-Based Semiconductor Heterostructures for Photocatalytic Pollution Gases Removal
📝 Authors: Wang, Y.; Du, K.; Xu, R.; Hao, W.; Du, Y.
📚 Journal: Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100824.
Focus: Reviews bismuth-based materials for gas pollution removal.

Operando Reconstruction-Induced CO2 Reduction Activity and Selectivity for Cobalt-Based Photocatalysis
📝 Authors: Zhao, K.; Pang, W.; Jiang, S.; Fu, D.; Zhao, H.
📚 Journal: Nano Research, 2023, 16(4), 4812–4820.
Focus: Studies cobalt-based photocatalysis for CO2 reduction.

Conclusion

Dr. Dandan Cui is a highly suitable candidate for the Best Researcher Award, given her outstanding contributions to two-dimensional materials and photocatalytic material science. Her impactful publications, innovative research, and leadership in collaborative projects make her a strong contender. To further enhance her candidacy, she could expand her recognition, secure research funding, and increase her interdisciplinary and societal contributions. With her trajectory, she is poised to make even more significant advances in her field and inspire future researchers.

Albandari Alrowaily | Material Science | Best Researcher Award

Assist. Prof. Dr Albandari Alrowaily | Infectious diseases | Best Researcher Award

Assist Prof at  Princess Nourah bint Abdulrahmman University, Saudi Arabia

🎓 Assist. Prof. Dr Albandari Alrowaily is an Assistant Professor of Physics at Princess Nourah Bint Abdurrahman University, Saudi Arabia. She specializes in theoretical nuclear and atomic physics with a Ph.D. from the University of North Texas. Starting her career as a high school physics teacher, she progressed through roles such as lecturer, committee member, and advisor. Passionate about education quality, she now serves as the Teaching and Learning Quality Manager. Assist. Prof. Dr Albandari Alrowaily is an advocate for empowering women in science, holding memberships in ISMWS and APS. Her contributions to academia include teaching a wide range of physics courses, mentoring students, and participating in critical departmental activities. Outside work, she actively supports cultural and environmental initiatives.

Professional Profiles:

Education 🎓

Ph.D. in Theoretical Nuclear and Atomic Physics (2021): University of North Texas, Denton, TX, USA. Master’s in Theoretical Nuclear Physics (2008): Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia. Bachelor’s in Physics (1999): Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia. Additional Certificates: Management, document organization, research ethics, teamwork, professional basics, and ESL.

Experience 👩‍🏫

High School Physics Teacher (1999–2000): Al-Jouf City. Teaching Assistant (2001–2007): Princess Nourah University. Committee Member: Grades Monitoring & Interviews (2001–2007). Lecturer (2008–2021): Princess Nourah University. Assistant Professor (2021–Present): Physics Department. Quality Manager (2022–Present): Teaching & Learning, College of Science. Additional Roles: Academic advisor, training supervisor, committee leader, and lab organizer.

Awards and Honors🏅

Ideal Student Awards (1992 & 1995): Al-Jouf Region. Distinguished Student (2000): Princess Nourah University. Travel Awards (2018–2019): DAMOP, UNT, and COS for research presentations. Recognized for exceptional contributions to academic excellence and community engagement.

Research Focus 🔬

Theoretical studies on nuclear and atomic physics, focusing on quantum mechanics, particle interactions, and advanced simulations. Proficient in computational methods using Matlab, Python, and Mathematica for modeling complex systems.  Research on nuclear reactions, atomic energy levels, and spectroscopic analysis. Advocates for interdisciplinary applications of physics to solve global challenges.

✍️Publications Top Note :

High-Performance Supercapacitors (ZnSe/MnSe)

Study: Development of ZnSe/MnSe composites for supercapacitor electrodes using hydrothermal techniques.

Publication: Journal of Physics and Chemistry of Solids, 2024, 49 citations.

Impact: Enhanced capacitive performance through novel material synthesis.

2. g-C3N4/NiIn2S4 for Supercapacitors

Study: Hydrothermal fabrication of g-C3N4/NiIn2S4 composite materials.

Publication: Ceramics International, 2024, 35 citations.

Impact: Promising electrode material with high efficiency.

3. Nonlinear Plasma Waves

Study: Interaction of solitons in pair-ion–electron plasmas using the Hirota method.

Publication: Physics of Fluids, 2023, 30 citations.

Impact: Advances theoretical understanding of electrostatic plasma dynamics.

4. SrCeO3/rGO for Oxygen Evolution Reaction

Study: Hydrothermal synthesis of SrCeO3 nanocomposites for electrocatalysis.

Publication: Fuel, 2024, 27 citations.

Impact: Enhanced catalytic efficiency for clean energy applications.

5. BiFeO3 Supercapacitor Applications

Study: Mn-doped BiFeO3 as an electrode material for supercapacitors.

Publication: Journal of Energy Storage, 2024, 20 citations.

Impact: Novel application of perovskite materials for energy storage.

6. Radiation Shielding Polymers

Study: Optical and mechanical improvements in polyvinyl alcohol composites.

Publication: Journal of Rare Earths, 2023, 18 citations.

Impact: Optimized materials for gamma-ray attenuation.

7. NiS2@SnS2 Nanohybrids

Study: Water-splitting applications of NiS2@SnS2 nanohybrids.

Publication: Materials Chemistry and Physics, 2024, 15 citations.

Impact: Low-cost, efficient electrocatalysts for sustainable energy.

8. Ce-doped SnFe2O4 Supercapacitors

Study: Hydrothermal synthesis enhancing electrochemical performance.

Publication: Electrochimica Acta, 2024, 13 citations.

Impact: Improved energy storage capabilities of supercapacitors.

Conclusion

The candidate has a robust academic background, extensive teaching experience, and proven leadership capabilities, making them a strong contender for the Research for Best Researcher Award. Strengthening the portfolio with focused research publications and demonstrating broader impacts of their work will further enhance their prospects for this prestigious recognition.

Mr. Rohitkumar Kannaujiya | Condense Matter Award | Young Scientist Award

Mr. Rohitkumar Kannaujiya | Condense Matter Award | Young Scientist Award

Mr. Rohitkumar Kannaujiya, Department of Physics, Sardar Patel University, India

Mr. Rohitkumar Kannaujiya is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Career Objective 💼

To associate with an organization, providing a platform for a challenging and promising career, offering opportunities for growth.

Teaching Skills and Personal Attributes 📚

Discussing course objectives, expectations & homework policies with pupils.Effective communication both verbally and in writing.Enjoyment in working with young people.Ability to involve and inspire students from all levels.

Educational Qualifications 🎓

M. Phil. in Physics, Sardar Patel University, Gujarat, 2018-2019M. Sc. in Physics, Sardar Patel University, Gujarat, 2013-2015B. Sc. in Physics, V. P. & R. P. T. P. Science College, Gujarat, 2011-201312th (U. P. Board) with first class, Sardar Patel Intercollege, Uttar Pradesh, 2009-201010th (U. P. Board) with first class, Sardar Patel Intercollege, Uttar Pradesh, 2007-2008

Papers Presented and Conferences Attended 🗣️📅

Growth and characterization of tin telluride (SnTe) single crystalsStudy and Characterization of tin dioxide (SnO2) nanoparticlesThermal study of direct vapour transport (DVT) grown quaternary Cu2ZnSnS4 single crystalsThermal study of copper oxide nanoparticles synthesized by wet precipitation method

Training and Workshops 🏫🔄

Visited Institute for Plasma Research – IPR and Facilitation Center for Industrial Plasma Technologies – FCITER as part of a study tourPersonality development program

Social and Environmental Participation 🌍

World Environment Day: Symposium and Poster PresentationNational Energy Conservation Day CelebrationUndergraduate Poster Competition: The Excitement and current research scenario in Physics (ECRSP -2013)

📊 Citation Metrics (Google Scholar):

Citations by: All – 181, Since 2018 – 181

h-index: All – 9, Since 2018 – 9

i10 index: All – 7, Since 2018 –7

📖 Publications  Top Note :

  1. “Sol-gel synthesis and thermal characterization of SnO2 nanoparticles”
    • Authors: GH Patel, SH Chaki, RM Kannaujiya, ZR Parekh, AB Hirpara, AJ Khimani, …
    • Journal: Physica B: Condensed Matter 613, 412987
    • Year: 2021
    • Citations: 31
  2. “Growth and characterizations of tin telluride (SnTe) single crystals”
    • Authors: RM Kannaujiya, AJ Khimani, SH Chaki, SM Chauhan, AB Hirpara, …
    • Journal: The European Physical Journal Plus 135, 1-12
    • Year: 2020
    • Citations: 30
  3. “CuO nanoparticles–synthesis by wet precipitation technique and its characterization”
    • Authors: ZR Parekh, SH Chaki, AB Hirpara, GH Patel, RM Kannaujiya, AJ Khimani, …
    • Journal: Physica B: Condensed Matter 610, 412950
    • Year: 2021
    • Citations: 29
  4. “Effect of Sb doping on CVT grown SnTe single crystals electrical and thermal properties”
    • Authors: RM Kannaujiya, SH Chaki, AJ Khimani, AB Hirpara, ZR Parekh, RK Giri, …
    • Journal: Journal of Materials Science: Materials in Electronics 33 (26), 20823-20836
    • Year: 2022
    • Citations: 14
  5. “Thermal exploration of sonochemically achieved SnS2 nanoparticles: Elemental, structural, and morphological investigations of TG residual SnS2”
    • Authors: AJ Khimani, SH Chaki, RK Giri, RR Meena, RM Kannaujiya, …
    • Journal: Chemical Thermodynamics and Thermal Analysis 9, 100104
    • Year: 2023
    • Citations: 11
  6. “Biological investigation of sonochemically synthesized CZTS nanoparticles”
    • Authors: AB Hirpara, SH Chaki, RM Kannaujiya, AJ Khimani, ZR Parekh, …
    • Journal: Applied Surface Science Advances 12, 100338
    • Year: 2022
    • Citations: 11
  7. “Kinetic stability of tin telluride nanoparticles synthesized by hydrothermal method”
    • Authors: RM Kannaujiya, SH Chaki, AJ Khimani, ZR Parekh, MP Deshpande
    • Journal: Chemical Thermodynamics and Thermal Analysis 6, 100058
    • Year: 2022
    • Citations: 10
  8. “Photoresponse application of the dip-coated Cu2ZnSnS4 thin film”
    • Authors: AB Hirpara, SH Chaki, RM Kannaujiya, MP Deshpande
    • Journal: Applied Physics A 129 (3), 226
    • Year: 2023
    • Citations: 9
  9. “Anisotropic photoresponse investigation of chemical vapor transport (CVT) grown quaternary Cu2ZnSnS4 single crystals”
    • Authors: AB Hirpara, SH Chaki, AJ Khimani, RM Kannaujiya, MP Deshpande
    • Journal: Journal of Materials Science: Materials in Electronics 33 (25), 20303-20316
    • Year: 2022
    • Citations: 9
  10. “Mechanistic insights into antibacterial and anti-biofilm activities against multidrug-resistant microbes of SnTe nanospheres synthesized by sonochemical method”
  • Authors: RM Kannaujiya, SH Chaki, AJ Khimani, RK Giri, AB Hirpara, YH Vaidya, …
  • Journal: Chemical Physics Impact 6, 100219
  • Year: 2023
  • Citations: 7
  1. “Thermal decomposition study of cadmium telluride (CdTe)”
  • Authors: ZS Kachhia, SH Chaki, RK Giri, ZR Parekh, RM Kannaujiya, AB Hirpara, …
  • Journal: Materials Today: Proceedings
  • Year: 2023
  • Citations: 6