Hao Luo | Measurement | Best Researcher Award

Mr. Hao Luo | Measurement | Best Researcher Award

Associate Professor, TianJin university, China

Hao Luo is an Associate Professor at Tianjin University, specializing in high-speed optical fiber communication, all-optical signal processing, and photonic microwave technology. 📡🔬 With extensive contributions to optoelectronic oscillators and high-precision micro-displacement measurement, his work enhances optical and microwave system performance. 📊📡 He has published numerous papers in Optics Express, IEEE Photonics Technology Letters, and other prestigious journals. 🏆📖 His research supports advancements in next-generation telecommunication and high-frequency signal processing. 🚀🔍 As an active contributor to photonics and optical engineering, he continues to shape the field with innovative methodologies and applied technologies. 💡🔧

Profile

Orcid

🎓 Education:

📚 PhD in Optical Communication Engineering – Tianjin University 🏛️Master’s in Electrical Engineering – Tianjin University ⚙️Bachelor’s in Telecommunications Engineering – Tianjin University 🎓

👨‍🏫 Experience:

Associate Professor, Tianjin University (Present)  Senior Researcher in High-Speed Optical Fiber Communication Optoelectronic Oscillator Specialist – Applied Microwave & Optical Engineering  Industry Collaborator in Advanced Photonics & Signal Processing Mentor & Advisor for Graduate Research in Photonic Systems 📖🎓

🏅 Awards & Honors:

🏆 Best Paper Award – Optics Express Outstanding Research Contribution in Microwave Photonics Invited Speaker at International Photonics Conferences 🎤🌍Recognized for Excellence in High-Precision Optical Sensing 🔬🏆

🔬 Research Focus:

High-speed Optical Fiber Communication 📡📶 All-optical Signal Processing with Nonlinear Effects 💡 Photonic Microwave Frequency Synthesis 📊📡 High-precision Micro-displacement Measurement Next-gen Optical Sensing & Telecommunication Technologies 🚀📡

Publications

Multi-Wavelength Narrow-Spacing Laser Frequency Stabilization Technology Based on Fabry-Perot Etalon

📅 Publication Date: 2024-10-18

📖 Journal: Micromachines

🔗 DOI: 10.3390/mi15101269

👨‍🔬 Contributors: Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Shiyu Zhang, Ruize Zhang, Chuang Ma

📝 Summary:

 

Proposes a Fabry-Perot Etalon-based stabilization method for multi-wavelength lasers with narrow spacing.

Enhances the frequency stability of laser sources for high-precision optical communication and microwave photonic applications.

Offers practical improvements for laser frequency locking and optical coherence control.

2️⃣ A Practicable Optoelectronic Oscillator with Ultra-Low Phase Noise

📅 Publication Date: 2024-06-28

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070614

👨‍🔬 Contributors: Ziyue Zheng, Jinlong Yu, Ju Wang, Chuang Ma, Hao Luo, Xuemin Su, Ye Gao

📝 Summary:

 

Develops an optoelectronic oscillator (OEO) with ultra-low phase noise for microwave photonic systems.

Utilizes advanced filtering techniques to suppress noise and enhance frequency stability.

Applicable for precision radar, satellite communications, and next-gen telecommunication networks.

3️⃣ Simplified 1.5 μm Distributed Feedback Semiconductor Laser (DFB-LD) Frequency Stabilization System Based on Gas Absorption Chamber

📅 Publication Date: 2024-06-28

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070621

👨‍🔬 Contributors: Ju Wang, Ye Gao, Jinlong Yu, Ziheng Cai, Hao Luo, Chuang Ma

📝 Summary:

 

Introduces a gas absorption chamber-based method for stabilizing DFB-LD at 1.5 μm wavelength.

Provides enhanced wavelength stability crucial for optical sensing, metrology, and high-speed communication.

Reduces system complexity while maintaining high accuracy and reliability.

4️⃣ Microwave Photonic Frequency Multiplier with Low Phase Noise Based on an Optoelectronic Oscillator

📅 Publication Date: 2024-06-24

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070588

👨‍🔬 Contributors: Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su, Ye Gao, Shi Jia

📝 Summary:

 

Develops a microwave photonic frequency multiplier based on an optoelectronic oscillator (OEO).

Achieves low phase noise, making it ideal for radar, wireless networks, and precision measurement.

Enhances signal stability and spectral purity compared to traditional electronic multipliers.

5️⃣ High-precision Micro-displacement Sensing Based on an Optical Filter and Optoelectronic Oscillators

📅 Publication Date: 2023-06-05

📖 Journal: Optics Express

🔗 DOI: 10.1364/OE.493068

👨‍🔬 Contributors: Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su

📝 Summary:

 

Proposes a high-precision displacement sensing system using optoelectronic oscillators and optical filtering techniques.

Provides sub-micron accuracy for precision engineering, biomedical imaging, and nanotechnology applications.

Demonstrates superior stability and noise reduction for long-term measurements.

6️⃣ High-precision Micro-displacement Measurement Method Based on Alternately Oscillating Optoelectronic Oscillators

📅 Publication Date: 2022-02-14

📖 Journal: Optics Express

🔗 DOI: 10.1364/OE.450812

👨‍🔬 Contributors: Ju Wang, Xuexin Guo, Jinlong Yu, Chuang Ma, Yang Yu, Hao Luo, Lingchao Liu

📝 Summary:

 

Develops a novel micro-displacement measurement system based on alternately oscillating optoelectronic oscillators.

Provides high-resolution displacement detection, essential for nano-positioning and high-precision instrumentation.

Offers superior noise suppression and measurement reliability.

7️⃣ Tunable Microwave Sawtooth Waveform Generation Based on One Single-drive Mach-Zehnder Modulator

📅 Publication Date: Not specified

📖 Journal: Optics Express

🔗 DOI: Not available

👨‍🔬 Contributors: Not specified

📝 Summary:

 

Explores a simplified method for generating tunable microwave sawtooth waveforms.

Uses a single-drive Mach-Zehnder modulator, reducing system complexity and improving efficiency.

Benefits radar signal processing, wireless communication, and advanced photonic circuits.

 

Conclusion

Dr. Hao Luo is a strong contender for the Best Researcher Award due to his exceptional contributions in optical communications, photonic signal processing, and high-precision measurement. His extensive research output, high-impact publications, and innovations in optoelectronics solidify his reputation as a leading scientist. To further strengthen his case, greater engagement in industry collaborations, large-scale projects, and interdisciplinary research would enhance his global impact.

 

Xiangyan Zhang | wafer defect detection | Best Researcher Award

Dr. Xiangyan Zhang | wafer defect detection | Best Researcher Award

Dr. Beijing University of Posts and Telecommunications , China

Xiangyan Zhang, a Ph.D. student at the School of Intelligent Engineering and Automation, Beijing University of Posts and Telecommunications, has a robust academic background with a Master of Engineering degree from Beijing University of  Science and Technology (2023). His research focuses on wafer defect detection and machine vision, with significant contributions including DMWMNet, a dual-branch multi-level convolutional network achieving high performance in wafer map defect detection. Zhang has published 4 SCI papers, 2 EI conference papers, holds 2 invention patents, and 3 software copyrights. He collaborates with the China Academy of Engineering Physics

 

Professional Profiles:

Orcid

Academic and Professional Background 📚👩‍🎓

In June 2023, I was awarded a Master of Engineering degree from Beijing University of Science and Technology, and in September 2023, I commenced my Ph.D. studies at Beijing University of Posts and Telecommunications. To date, I have published 4 SCI papers, 2 EI conference papers, granted 2 invention patents, and obtained 3 software copyrights.

Research and Innovations 🔬💡

Completed/Ongoing Research Projects 🚀Vision-based robotic grasp detection projectWafer defect detection project

Citation Index 📑

Zhang, X., Jiang, Z., Yang, H., Mo, Y., Zhou, L., Zhang, Y., Li, J., Wei, S. (2024). DMWMNet: A novel dual-branch multi-level convolutional network for high-performance mixed-type wafer map defect detection in semiconductor manufacturing. Computers in Industry, 161, 104136

✍️Publications Top Note :

Patent Authorization Number: ZL202210817429.4
A six-degree-of-freedom grasping detection algorithm based on semantic segmentation networks.

Patent Application Number: 202310654572.0
A grasping detection network based on RGBD images and semantic segmentation for residual fitting.

Zhang, Xiangyan, et al. (2024): DMWMNet: A novel dual-branch multi-level convolutional network for high-performance mixed-type wafer map defect detection in semiconductor manufacturing. Computers in Industry, 161, 104136.

Zhang Qinjian†, Zhang Xiangyan†, et al. (2022): TMSCNet: A three-stage multi-branch self-correcting trait estimation network for RGB and depth images of lettuce. Frontiers in Plant Science, 13.

Wu Yalin, Zhang Qinjian, Zhang Xiangyan, et al. (2022):* Novel binary logistic regression model based on feature transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems. Future Generation Computer Systems-the International Journal of Escience, 129: 1-12.

Zhang Wu, Li Haiyuan, Zhang Xiangyan, et al. (2021):* Research progress and development trend of surgical robot and surgical instrument arm. International Journal of Medical Robotics and Computer Assisted Surgery, 17(5).

Zhang Xiangyan, Li Haiyuan, et al. (2021):* Kinematics Analysis and Grasping Simulation of a Humanoid Underactuated Dexterous Hand. 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO): 55-60.

Zhang Qinjian, Zhang Xiangyan, Li Haiyuan (2022):* A Grasp Pose Detection Network Based on the DeepLabv3+ Semantic Segmentation Model. International Conference on Intelligent Robotics and Applications (ICIRA): 747-758. (EI)

Dr. Masih Paknejad | precision machining Award | Best Researcher Award

Dr. Masih Paknejad | precision machining Award | Best Researcher Award

Dr. Masih Paknejad, KSF (Kompetenzzentrum für Spanende Fertigung), Germany

Dr. Masih Paknejad is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

Professional Profiles:

Orcid

Google scholar

Work Experience 🛠️

Institute of Advanced Machining (KSF), GermanyTeam Leader, Postdoctoral Research Fellow2023 – PresentMachine Tools Committee ISO/ISIRI TC 39, IranSenior Member, Chief and Technical Editor of Machine Tools Standards2022 – PresentTurbine Engineering and Manufacturing Co. (TUGA), IranExpert Engineer (R&D Department)2019 – 2021Persian Ultrasonic Co., IranCEO, Design and Manufacture of High Power Ultrasonic Transducer2019 – PresentHitec-Machinery Trading Co., IranTechnical Advisor, Supervisor of Test and Calibration of Machine Tools2017 – 2019Semnan University, IranLecturer2018 – 2019Courses: Materials Science and Engineering, Metrology Lab., Machine Tools Workshop, Engineering Drawing, Hydraulics and Hydraulics Lab, Welding WorkshopAmirkabir University of Technology, IranStrength of Material Lab Expert, Metrology Lab Expert, Teacher Assistant2012 – 2018Courses: Nontraditional Manufacturing Processes, Machine Element DesignIslamic Azad University (Saveh Branch), IranLecturer2011 – 2012Courses: Metrology, Production Methods, Nontraditional Manufacturing Processes

Education 🎓

Furtwangen University – KSF Institute
Feb 2022 – Sep 2023Postdoc FellowTitle: Ultras-Short Pulse Laser-Assisted Micro-Grinding of Silicon CeramicsAmirkabir University of TechnologySep 2011 – Nov 2017
Ph.D.Dissertation: Theoretical-Experimental Model of Heat Generation in Ultrasonic Assisted Dry Creep Feed Grinding ProcessFurtwangen University – KSF Institute
Jun 2014– Jan 2015Sabbatical ResearcherAmirkabir University of TechnologySep 2008 – Jul 2011M.Sc.Thesis: Theoretical and Experimental Analysis of Ultrasonic Assisted Indentation Forming of TubeIsfahan University of TechnologySep 2004– Sep 2008B.Sc.Thesis: Design of Centrifugal Chip Lubricant Separator DeviceAwards & Honors 🏆Scholarship Award granted by the Ministry of Science Research and Technology of IranAward of the Alborz Regional Innovation and Flourishing Festival, National Elites FoundationPatent for “Design and Manufacture of Ultrasonic Assisted Indentation Forming Device”Award of Elite Entrance, National Organization for Educational Testing (NOET)Ranked 3rd among 39 Undergraduate Students, Mechanical Engineering Department, Isfahan University of TechnologyComputer Skills 💻Mechanical Eng. Software: ABAQUS, ANSYS, CATIA, MasterCAM, MSC Visual

Nastran, Automation StudioProgramming Language: MATLABSoftware Packages: Microsoft Office, Windows

Awards & Honors 🏆

Scholarship Award granted by the Ministry of Science Research and Technology of IranAward of the Alborz Regional Innovation and Flourishing Festival, National Elites FoundationPatent for “Design and Manufacture of Ultrasonic Assisted Indentation Forming Device”Award of Elite Entrance, National Organization for Educational Testing (NOET)Ranked 3rd among 39 Undergraduate Students, Mechanical Engineering Department, Isfahan University of Technology

Computer Skills 💻

Mechanical Eng. Software: ABAQUS, ANSYS, CATIA, MasterCAM, MSC Visual Nastran, Automation StudioProgramming Language: MATLABSoftware Packages: Microsoft Office, Windows

📊 Citation Metrics (Google Scholar):

Citations by: All – 87, Since 2019 – 70
h-index: All – 3, Since 2018 – 3
i10 index: All – 3, Since 2018 –3

 

📖 Publications  Top Note :

Investigation of laser-assisted cylindrical grinding of silicon nitride ceramics with controlled damage zone

Journal: Optics & Laser Technology

Date: July 2024

DOI: 10.1016/j.optlastec.2024.110616

Contributors: Esmaeil Ghadiri Zahrani; Masih Paknejad; Ali Zahedi; Bahman Azarhoushang

Laser-assisted surface grinding of innovative superhard SiC-bonded diamond (DSiC) materials

Journal: Ceramics International

Date: February 2024

DOI: 10.1016/j.ceramint.2024.02.323

Contributors: Masih Paknejad; Bahman Azarhoushang; Ali Zahedi; Mehdi Khakrangin; Robert Bösinger; Faramarz Hojati

Investigation of material removal mechanisms of laser-structured Si3N4 via single diamond grit scratching

Journal: The International Journal of Advanced Manufacturing Technology

Date: March 2023

DOI: 10.1007/s00170-022-10793-0

Contributors: Masih Paknejad; Bahman Azarhoushang; Ali Zahedi; Mehdi Khakrangin; Mohammad Ali Kadivar

Investigation of material removal mechanisms of laser-structured Si3N4 via single diamond grit scratching

Date: September 2, 2022

DOI: 10.21203/rs.3.rs-1974605/v1

Contributors: Masih Paknejad; Bahman Azarhoushang; Ali Zahedi; Mehdi Khakrangin; Mohammad Ali Kadivar

Ductile-brittle transition mechanisms in micro-grinding of silicon nitride

Journal: Ceramics International

Date: August 2022

DOI: 10.1016/j.ceramint.2022.08.088

Contributors: Masih Paknejad

Numerical Simulation of Ultrasonic Assisted Indentation Tube Forming

Journal: ADMT Journal

Date: September 2020

DOI: 10.30495/admt.2020.1869462.1124

Contributors: Masih Paknejad

Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding

Journal: Ultrasonics Sonochemistry

Date: November 2017

DOI: 10.1016/j.ultsonch.2017.04.029

Contributors: Masih Paknejad

Theoretical and experimental analyses of ultrasonic-assisted indentation forming of tube

Journal: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Date: March 2014

DOI: 10.1177/0954405413501502

Contributors: Masih Paknejad