Zhenghui Luo | organic solar cells | Best Researcher Award

Assoc Prof Dr. Shenzhen University, China

Dr. Luo Zhenghui, born in October 1991 in Wuhan, Hubei Province, is an Associate Professor at Shenzhen University, specializing in organic optoelectronic functional materials. He completed his PhD in Organic Chemistry at Wuhan University under the supervision of Professor Yang Chuluo, with joint training at the Institute of Chemistry, Chinese Academy of Sciences. Dr. Luo has published over 100 SCI papers, with 26 recognized as ESI Highly Cited Papers. His research focuses on the design and synthesis of non-fullerene acceptor materials and organic photovoltaic devices. He has received multiple awards, including recognition as a Clarivate Analytics Highly Cited Scientist.

 

Professional Profiles:

Education:

PhD in Organic Optoelectronic Functional Materials, Wuhan UniversitySupervisor: Professor Yang ChuluoJoint Training: Institute of Chemistry, Chinese Academy of Sciences (Academician Li Yongfang)Research Direction: Design, synthesis, and photovoltaic device research of non-fullerene acceptor materials

Research Focus:

Organic photovoltaic materials and devicesPreparation and optimization of organic photovoltaic devicesDesign and synthesis of non-fullerene acceptor materials

Key Achievements:

Published over 100 SCI papers since May 2016.26 papers selected as ESI Highly Cited Papers and 26 as ESI Hot Topics.Total citations exceed 8,000 (H-index: 51 on Google Scholar).First author or corresponding author on 54 papers, including top journals like Joule, Advanced Materials, Angewandte Chemie International Edition, and Energy & Environmental Science.Awarded for outstanding research contributions, including the 2020 Cell Press Chinese Scientist Best Paper Award in Material Science and selection as a Clarivate Analytics Highly Cited Scientist for multiple years.

Awards:

Top 2% of the world’s top scientists in Environment, Energy, and Sustainability journals for three consecutive years (2021-2023).Second prize winner in Guangdong Province and Shenzhen City Natural Science Award in 2022.

Strengths for the Award

1. Exceptional Publication Record: Luo Zhenghui has published over 100 SCI papers since May 2016, with 26 being selected as ESI Highly Cited Papers and 26 as ESI Hot Topics. His research output demonstrates both quality and impact, with a Google Scholar H-index of 51 and over 8,000 citations. His work in high-impact journals such as Advanced Materials, Angewandte Chemie, Joule, and Nature Communications underscores his contributions to the field of organic optoelectronic functional materials.

2. Expertise in Organic Photovoltaic Materials: Luo’s research focuses on organic photovoltaic materials and devices, particularly the design, synthesis, and application of non-fullerene acceptor materials. His innovative work in this area has led to significant advancements, including the development of polymer solar cells with efficiencies exceeding 17%. His expertise in molecular design and device engineering is evident in his numerous high-impact publications.

3. Recognition and Awards: Luo has received several prestigious awards, including the Cell Press Chinese Scientist Best Paper Award (First Place in Material Science) and the Outstanding Paper Award from Science China Chemistry. His recognition as a Clarivate Analytics Highly Cited Scientist and inclusion in the top 2% of the world’s top scientists further solidifies his standing in the scientific community.

4. Collaborative and Interdisciplinary Research: Luo has successfully collaborated with leading researchers and institutions, including joint training with the Institute of Chemistry, Chinese Academy of Sciences, and research at the Hong Kong University of Science and Technology. His interdisciplinary approach has contributed to his success in advancing organic optoelectronics and photovoltaic research.

Areas for Improvement

1. Diversification of Research Focus: While Luo’s focus on organic photovoltaic materials has yielded significant results, diversifying his research portfolio could enhance his contributions to other emerging areas within organic optoelectronics. Expanding into related fields such as organic light-emitting diodes (OLEDs) or organic semiconductors could further strengthen his overall research impact.

2. Increased Industry Collaboration: To translate his research into practical applications, Luo could benefit from increased collaboration with industry partners. Engaging in technology transfer and commercialization efforts could amplify the societal impact of his research, particularly in the development and deployment of organic photovoltaic technologies.

3. Outreach and Mentorship: Luo could consider increasing his involvement in outreach and mentorship activities. Guiding the next generation of researchers and actively participating in scientific outreach could enhance his visibility and influence within the broader scientific community.

 

✍️Publications Top Note :

Fine-tuning energy levels via asymmetric end groups – This paper reports on polymer solar cells achieving efficiencies over 17% through the fine-tuning of energy levels using asymmetric end groups. Published in Joule in 2020, it has been cited 367 times.

Improving open-circuit voltage by a chlorinated polymer donor – This study demonstrates how a chlorinated polymer donor can improve the efficiency of binary organic solar cells to over 17%. Published in Science China Chemistry in 2020, with 328 citations.

A layer-by-layer architecture for printable organic solar cells – This research addresses the challenge of module efficiency in organic solar cells by using a layer-by-layer architecture. It was published in Joule in 2020 and has 317 citations.

Precisely controlling the position of bromine on the end group – This work explores how the precise positioning of bromine on polymer acceptors can lead to solar cells with efficiencies over 15%. It was published in Advanced Materials in 2020 and has been cited 311 times.

Fine-tuning molecular packing and energy level through methyl substitution – This paper focuses on methyl substitution for fine-tuning molecular packing, leading to efficient nonfullerene polymer solar cells. Published in Advanced Materials in 2018, it has 292 citations.

Use of two structurally similar small molecular acceptors – The study shows how using two structurally similar acceptors can enable high-efficiency ternary organic solar cells. Published in Energy & Environmental Science in 2018, it has 280 citations.

Asymmetrical ladder-type donor-induced polar small molecule acceptor – This research promotes fill factors approaching 77% in high-performance nonfullerene polymer solar cells. Published in Advanced Materials in 2018, it has 273 citations.

16% efficiency all-polymer organic solar cells – The paper reports on achieving a 16% efficiency in all-polymer organic solar cells via a finely tuned morphology. Published in Joule in 2021, with 243 citations.

Simultaneous enhanced efficiency and thermal stability – This work demonstrates enhanced efficiency and thermal stability in organic solar cells using a polymer acceptor additive. Published in Nature Communications in 2020, it has 239 citations.

A nonfullerene acceptor with a 1000 nm absorption edge – This study discusses the development of a nonfullerene acceptor leading to improved efficiencies in organic solar cells. Published in Energy & Environmental Science in 2019, with 229 citations.

Conclusion

Luo Zhenghui is an outstanding candidate for the Best Researcher Award, with a proven track record of high-impact research, numerous accolades, and significant contributions to the field of organic optoelectronic functional materials. His expertise in organic photovoltaic materials, coupled with his collaborative and interdisciplinary approach, positions him as a leader in his field. While there is potential for further growth in diversifying his research focus and increasing industry collaboration, Luo’s achievements to date make him a highly deserving recipient of this prestigious award.

Prof. Vladislav Sadykov | functional nanomaterials | Best Researcher Award

Prof. Vladislav Sadykov | functional nanomaterials | Best Researcher Award

Prof. Vladislav Sadykov, Boreskov Institute of catalysis, Russia

Prof. Vladislav Sadykov is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Scopus

Orcid

Education 🎓

MS, 1973: Novosibirsk State University, RussiaPhD, 1979: Boreskov Institute of Catalysis (BIC), NovosibirskDoctor of Sciences, 1999: Boreskov Institute of Catalysis, NovosibirskProfessor, 1999: Novosibirsk State University, Novosibirsk

Career/Employment 🏢

Boreskov Institute of Catalysis:Research Fellow, 1973Junior Research Scientist, 1975Senior Research Scientist, 1985Head of Laboratory, 1990-2021; Chief Research Scientist, up to dateNovosibirsk State University:Professor, 1999-up to date; Chair of Physical Chemistry and Solid State Chemistry

Current Research Interests 🔬

Heterogeneous Catalysis: Red-ox processes for energy production (including solid oxide fuel cells) and environmental protectionCatalytic Processes: Short contact times for syngas and hydrogen production from biofuelsNanophase and Nanocomposite Materials: Advanced technologies in complex oxides, pillared clays, framework silicates, nanocomposites with mixed ionic-electronic conductivity synthesisSolid State Ionics: Oxygen and hydrogen separation membranes

International Collaboration 🌍

BIC Team Leader in FP6 Projects:SOFC 600 SES6-2006-020089 “Demonstration of SOFC stack technology for operation at 600°C”STRP 033410 MatSILC “Novel Materials for Silicate-Based Fuel Cells”FP7 Project OCMOL228953: “Oxidative Coupling of Methane followed by Oligomerization to Liquids”BIOGO for Production, THEBARCODE: NATO Science for Peace Project “Solid Oxide Fuel Cells for Energy Security”International Science and Technology Center (ISTC) Projects:2529 “Development of an efficient, inexpensive nanocomposite catalyst and elaboration of a flexible technology to produce syn-gas for fuel cells”3234 “Development of high-performance oxygen-conducting membranes and compact pure syngas generators on their base”Russian-French Network of Laboratories: “Fundamental bases of design of nanocomposite catalysts for transformation of biofuels into syngas and hydrogen” (Partner Lab. of Materials, Univ. Strasbourg, CNRS, Prof. A.–C. Roger), 2011-2014INTAS Projects: Collaborations with Prof. J. Ross (Ireland), Prof. E. Kemnitz (Germany), Prof. S. Neophytides (Greece), et al.

Honours, Awards, Fellowships, Membership of Professional Societies 🏅

Award of the Russian Federation Government in Science and Technology, 1999: Development and Industrial Application of the Two-Stage Technology of Ammonia Oxidation under Pressure in the Diluted Nitric Acid ProductionBalandin Award of the Russian Academy of Sciences, 2007: Series of works “The role of defect structure of catalysts of red-ox reactions”Koptyug Award, 2012: NAN Belarus-Siberian Branch of the Russian Academy of Sciences for the series of works “Scientific bases of design of composite and nanostructured materials for the hydrogen energy field”Editorial Board Member:Applied Catalysis APhysics of Combustion and Flame (Russia)Open Chemistry (de Gruyter Open)Energies (MDPI)Membranes (MDPI)Professional Society Membership:American Chemical SocietyMaterials Research Society (USA)Mendeleev Chemical Society (Russia)

Title: Approaches to the design of efficient and stable catalysts for biofuel reforming into syngas: doping the mesoporous MgAl2O4 support with transition metal cations

Journal: Dalton Transactions

Year: 2023

Contributors: Vladislav A. Sadykov, Nikita F. Eremeev, Ekaterina Sadovskaya, Julia E. Fedorova, Marina V. Arapova, Ludmilla N. Bobrova, Arkady V. Ishchenko, Tamara A. Krieger, Maksim S. Melgunov, Tatyana S. Glazneva, et al.

DOI: 10.1039/D3DT00830D

Title: Design of Mixed Ionic-Electronic Materials for Permselective Membranes and Solid Oxide Fuel Cells Based on Their Oxygen and Hydrogen Mobility

Journal: Membranes

Year: 2023-07-27

Contributors: Vladislav Sadykov, Elena Pikalova, Ekaterina Sadovskaya, Anna Shlyakhtina, Elena Filonova, Nikita Eremeev

DOI: 10.3390/membranes13080698

Title: Methane Dry Reforming Catalysts Based on Pr-Doped Ceria–Zirconia Synthesized in Supercritical Propanol

Journal: Energies

Year: 2023-06-15

Contributors: Marina Arapova, Ekaterina Smal, Yuliya Bespalko, Konstantin Valeev, Valeria Fedorova, Amir Hassan, Olga Bulavchenko, Vladislav Sadykov, Mikhail Simonov

DOI: 10.3390/en16124729

Title: Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure

Journal: Membranes

Year: 2023-06-13

Contributors: Yuliya Bespalko, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Olga Bulavchenko, Evgenii Suprun, Mikhail Mikhailenko, Mikhail Korobeynikov, Vladislav Sadykov

DOI: 10.3390/membranes13060598

Title: Dry Reforming of Methane over 5%Ni/Ce1-xTixO2 Catalysts Obtained via Synthesis in Supercritical Isopropanol

Journal: International Journal of Molecular Sciences

Year: 2023-06-02

Contributors: Ekaterina Smal, Yulia Bespalko, Marina Arapova, Valeria Fedorova, Konstantin Valeev, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Tatiana Glazneva, Vladislav Sadykov, et al.

DOI: 10.3390/ijms24119680

Title: Ethanol Dry Reforming over Bimetallic Ni‐Containing Catalysts Based on Ceria‐Zirconia for Hydrogen Production

Journal: ChemCatChem

Year: 2023-05-19

Contributors: Valeria Fedorova, Yulia Bespalko, Marina Arapova, Ekaterina Smal, Konstantin Valeev, Igor Prosvirin, Vladislav Sadykov, Ksenia Parkhomenko, Anne‐Cécile Roger, Mikhail Simonov

DOI: 10.1002/cctc.202201491

Title: Methane Dry Reforming Catalysts Based on Pr-doped Ceria-Zirconia Synthesized in Supercritical Propanol

Journal: Preprint

Year: 2023-05-09

Contributors: Marina Arapova, Ekaterina Smal, Yuliya Bespalko, Konstantin Valeev, Valeria Fedorova, Amir Hassan, Olga Bulavchenko, Vladislav Sadykov, Mikhail Simonov

DOI: 10.20944/preprints202305.0617.v1

Title: Advances in Hydrogen and Syngas Generation

Journal: Energies

Year: 2023-03-29

Contributors: Vladislav Sadykov

DOI: 10.3390/en16073127

Title: Structural and transport properties of Nd tungstates and their composites with Ni0.5Cu0.5O obtained by mechanical activation

Journal: Dalton Transactions

Year: 2022

Contributors: Nikita F. Eremeev, Yuliya N. Bespalko, Ekaterina M. Sadovskaya, Pavel I. Skriabin, Tamara A. Krieger, Arcady V. Ishchenko, Vladislav A. Sadykov

DOI: 10.1039/D2DT00498D

Title: Ni and Ni–Co Catalysts Based on Mixed Ce–Zr Oxides Synthesized in Isopropanol Medium for Dry Reforming of Methane

Journal: Russian Journal of Physical Chemistry B

Year: 2022-12

Contributors: Yu. N. Bespalko, V. E. Fedorova, E. A. Smal, M. V. Arapova, K. R. Valeev, T. A. Krieger, A. V. Ishchenko, V. A. Sadykov, M. N. Simonov

DOI: 10.1134/S1990793122080048

Title: Efficient Catalysts of Ethanol Steam Reforming Based on Perovskite-Fluorite Nanocomposites with Supported Ni: Effect of the Synthesis Methods on the Activity and Stability

Journal: Catalysts

Year: 2022-10

Contributors: Marina Arapova, Symbat Naurzkulova, Tamara Krieger, Vladimir Rogov, Vladislav Sadykov

DOI: 10.3390/catal12101151