Hao Luo | Measurement | Best Researcher Award

Mr. Hao Luo | Measurement | Best Researcher Award

Associate Professor, TianJin university, China

Hao Luo is an Associate Professor at Tianjin University, specializing in high-speed optical fiber communication, all-optical signal processing, and photonic microwave technology. 📡🔬 With extensive contributions to optoelectronic oscillators and high-precision micro-displacement measurement, his work enhances optical and microwave system performance. 📊📡 He has published numerous papers in Optics Express, IEEE Photonics Technology Letters, and other prestigious journals. 🏆📖 His research supports advancements in next-generation telecommunication and high-frequency signal processing. 🚀🔍 As an active contributor to photonics and optical engineering, he continues to shape the field with innovative methodologies and applied technologies. 💡🔧

Profile

Orcid

🎓 Education:

📚 PhD in Optical Communication Engineering – Tianjin University 🏛️Master’s in Electrical Engineering – Tianjin University ⚙️Bachelor’s in Telecommunications Engineering – Tianjin University 🎓

👨‍🏫 Experience:

Associate Professor, Tianjin University (Present)  Senior Researcher in High-Speed Optical Fiber Communication Optoelectronic Oscillator Specialist – Applied Microwave & Optical Engineering  Industry Collaborator in Advanced Photonics & Signal Processing Mentor & Advisor for Graduate Research in Photonic Systems 📖🎓

🏅 Awards & Honors:

🏆 Best Paper Award – Optics Express Outstanding Research Contribution in Microwave Photonics Invited Speaker at International Photonics Conferences 🎤🌍Recognized for Excellence in High-Precision Optical Sensing 🔬🏆

🔬 Research Focus:

High-speed Optical Fiber Communication 📡📶 All-optical Signal Processing with Nonlinear Effects 💡 Photonic Microwave Frequency Synthesis 📊📡 High-precision Micro-displacement Measurement Next-gen Optical Sensing & Telecommunication Technologies 🚀📡

Publications

Multi-Wavelength Narrow-Spacing Laser Frequency Stabilization Technology Based on Fabry-Perot Etalon

📅 Publication Date: 2024-10-18

📖 Journal: Micromachines

🔗 DOI: 10.3390/mi15101269

👨‍🔬 Contributors: Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Shiyu Zhang, Ruize Zhang, Chuang Ma

📝 Summary:

 

Proposes a Fabry-Perot Etalon-based stabilization method for multi-wavelength lasers with narrow spacing.

Enhances the frequency stability of laser sources for high-precision optical communication and microwave photonic applications.

Offers practical improvements for laser frequency locking and optical coherence control.

2️⃣ A Practicable Optoelectronic Oscillator with Ultra-Low Phase Noise

📅 Publication Date: 2024-06-28

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070614

👨‍🔬 Contributors: Ziyue Zheng, Jinlong Yu, Ju Wang, Chuang Ma, Hao Luo, Xuemin Su, Ye Gao

📝 Summary:

 

Develops an optoelectronic oscillator (OEO) with ultra-low phase noise for microwave photonic systems.

Utilizes advanced filtering techniques to suppress noise and enhance frequency stability.

Applicable for precision radar, satellite communications, and next-gen telecommunication networks.

3️⃣ Simplified 1.5 μm Distributed Feedback Semiconductor Laser (DFB-LD) Frequency Stabilization System Based on Gas Absorption Chamber

📅 Publication Date: 2024-06-28

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070621

👨‍🔬 Contributors: Ju Wang, Ye Gao, Jinlong Yu, Ziheng Cai, Hao Luo, Chuang Ma

📝 Summary:

 

Introduces a gas absorption chamber-based method for stabilizing DFB-LD at 1.5 μm wavelength.

Provides enhanced wavelength stability crucial for optical sensing, metrology, and high-speed communication.

Reduces system complexity while maintaining high accuracy and reliability.

4️⃣ Microwave Photonic Frequency Multiplier with Low Phase Noise Based on an Optoelectronic Oscillator

📅 Publication Date: 2024-06-24

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070588

👨‍🔬 Contributors: Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su, Ye Gao, Shi Jia

📝 Summary:

 

Develops a microwave photonic frequency multiplier based on an optoelectronic oscillator (OEO).

Achieves low phase noise, making it ideal for radar, wireless networks, and precision measurement.

Enhances signal stability and spectral purity compared to traditional electronic multipliers.

5️⃣ High-precision Micro-displacement Sensing Based on an Optical Filter and Optoelectronic Oscillators

📅 Publication Date: 2023-06-05

📖 Journal: Optics Express

🔗 DOI: 10.1364/OE.493068

👨‍🔬 Contributors: Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su

📝 Summary:

 

Proposes a high-precision displacement sensing system using optoelectronic oscillators and optical filtering techniques.

Provides sub-micron accuracy for precision engineering, biomedical imaging, and nanotechnology applications.

Demonstrates superior stability and noise reduction for long-term measurements.

6️⃣ High-precision Micro-displacement Measurement Method Based on Alternately Oscillating Optoelectronic Oscillators

📅 Publication Date: 2022-02-14

📖 Journal: Optics Express

🔗 DOI: 10.1364/OE.450812

👨‍🔬 Contributors: Ju Wang, Xuexin Guo, Jinlong Yu, Chuang Ma, Yang Yu, Hao Luo, Lingchao Liu

📝 Summary:

 

Develops a novel micro-displacement measurement system based on alternately oscillating optoelectronic oscillators.

Provides high-resolution displacement detection, essential for nano-positioning and high-precision instrumentation.

Offers superior noise suppression and measurement reliability.

7️⃣ Tunable Microwave Sawtooth Waveform Generation Based on One Single-drive Mach-Zehnder Modulator

📅 Publication Date: Not specified

📖 Journal: Optics Express

🔗 DOI: Not available

👨‍🔬 Contributors: Not specified

📝 Summary:

 

Explores a simplified method for generating tunable microwave sawtooth waveforms.

Uses a single-drive Mach-Zehnder modulator, reducing system complexity and improving efficiency.

Benefits radar signal processing, wireless communication, and advanced photonic circuits.

 

Conclusion

Dr. Hao Luo is a strong contender for the Best Researcher Award due to his exceptional contributions in optical communications, photonic signal processing, and high-precision measurement. His extensive research output, high-impact publications, and innovations in optoelectronics solidify his reputation as a leading scientist. To further strengthen his case, greater engagement in industry collaborations, large-scale projects, and interdisciplinary research would enhance his global impact.

 

Dingke Zhang | Micro nano laser materials and devices | Best Researcher Award

Dr. Farzad Ghafoorian | Micro nano laser materials and devices | Best Researcher Award

professor, Chongqing Normal University , China

🎓 Dingke Zhang, Doctor of Science & Professor at Chongqing Normal University, specializes in high-performance organic laser devices. She earned her Ph.D. from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, followed by six years of postdoctoral research at Northeast Normal University and RMIT University, Australia. Her expertise spans micro/nano optoelectronic materials and devices, amplified spontaneous emission, and ultrafast spectroscopic dynamics. She has published extensively in top-tier journals such as Advanced Materials, Advanced Functional Materials, and Small. Recognized for her contributions, she received Chongqing’s Third Prize for Natural Science and First Prize for Innovation in Industry-University-Research Cooperation.

Profile

scopus

Education 🎓

📍 Ph.D. in Applied Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 🏅Postdoctoral Research in Micro/Nano Optoelectronics, Northeast Normal University, China 🏅Research in Optoelectronic Materials & Devices, RMIT University, Australia 🏅

Experience 🏆

🔹 Professor, Chongqing Normal University (Present) 📚 Postdoctoral Researcher, RMIT University, Australia (Optoelectronic Materials) 🔬 Postdoctoral Researcher, Northeast Normal University, China (Micro/Nano Devices) 🧪

Awards & Honors 🏅

🏆 Third Prize, Natural Science Award, Chongqing  First Prize, Innovation Achievement in Industry-University-Research, Chongqing 🌟

Research Focus 🔬

🔬 High-performance organic laser devices 🌈 Amplified spontaneous emission & ultrafast spectroscopic dynamics ⚛️ Micro/Nano optoelectronic materials  Perovskite materials, organic polymers & dyes 🏅

Publications

1️⃣ High-density superhard carbon stabilized by strain-induced phase transitionDiamond and Related Materials, 2025 (0 Citations)
2️⃣ Enhanced NIR amplified spontaneous emission in black-phase FAPbI3 perovskite filmsAdvanced Functional Materials, 2025 (0 Citations)
3️⃣ V doping for optimized hydrogen evolution in NiO nanosheetsKexue Tongbao, 2024 (0 Citations)
4️⃣ In situ Ni@NiO Schottky heterojunctions for electrocatalysisJournal of Materials Chemistry C, 2024 (0 Citations)
5️⃣ Phase distribution in Ruddlesden–Popper perovskite films for enhanced ASEOptics Letters, 2024 (0 Citations)
6️⃣ Flexible MAPbBr3 perovskite films with mechanical reliabilityApplied Physics Letters, 2024 (1 Citation)
7️⃣ 2D Halide Perovskites for Resistive Switching Memory & SynapsesAdvanced Science, 2024 (6 Citations)
8️⃣ Phase distribution in quasi-2D perovskite films for nanosecond-pumped ASEScience China Materials, 2024 (2 Citations)
9️⃣ Color emission manipulation in perovskites via anion exchangeAdvanced Materials, 2024 (5 Citations)
🔟 Stable MAPbI3 film construction for high-performance ASEChemical Engineering Journal, 2024 (1 Citation)

Conclusion

Dr. Dingke Zhang is a strong candidate for the Best Researcher Award, particularly in the field of micro/nano laser materials and optoelectronics. Her groundbreaking research, high-impact publications, and prestigious awards make her highly competitive. Strengthening industry collaborations, technology commercialization, and leadership in large-scale research initiatives would further enhance her standing in global research excellence.

Jiancun Zhao | Metasurface | Young Scientist Award

Dr. Jiancun Zhao | Metasurface | Young Scientist Award

Associate researcher, Northwestern Polytechnical University, China

Jianchun Zhao is an Associate Researcher and Director of the Production Department at the Intelligent Sensor Chip Technology Research Center, Ningbo Research Institute, Northwestern Polytechnical University 🎓. He obtained his Ph.D. from Northwestern Polytechnical University 🎖️. His research expertise lies in micro-nano optical imaging devices, all-solid-state flexible electrochromic devices, and MEMS sensor fabrication technologies 🔬. He has published 11 papers in top journals, including Advanced Science, Advanced Optical Materials, and Optics Letters 📚. Additionally, he has applied for 30 patents (18 authorized), including 17 invention patents and 13 utility model patents 🏅. His pioneering work contributes to next-generation optical imaging, sensing, and nanotechnology applications 🚀.

Profile

orcid

Education 🎓

Ph.D. in Engineering – Northwestern Polytechnical University (Year Not Specified) 🏅Specialized in Micro-Nano Optical Imaging, Electrochromic Devices, and MEMS Sensors 🔬Conducted advanced research in spectral filter chips and visible wide-band absorbers 📡Trained in integrated circuit design and semiconductor material processing ⚙️Developed expertise in flexible electronic materials and photonic devices 💡

Experience 👨‍🔬

Associate Researcher & Director, Intelligent Sensor Chip Technology Research Center, Ningbo Research Institute, Northwestern Polytechnical University (Present) 🏛️Leads R&D in micro-nano optical imaging, electrochromic devices, and MEMS sensors 🔬Collaborates with academic institutions and industries on semiconductor technologies 🤝Has published 11 papers in high-impact journals 📚Applied for 30 patents, with 18 already authorized 📜

Awards and Honors 🏆

Recognized expert in micro-nano optical imaging and MEMS sensors 🏅Holds 17 invention patents and 13 utility model patents 🔬Published in Advanced Science, Optics Letters, and Applied Physics Letters 📖Invited speaker at leading optical and materials science conferences 🎤Contributor to next-gen sensor chip and photonic material innovations 💡

Research Focus 🔍

Micro-Nano Optical Imaging Devices – Spectral filter chips, wide-band absorbers 🎥All-Solid-State Flexible Electrochromic Devices – Smart glass, energy-efficient displays 🔋MEMS Sensor Fabrication Technologies – Miniaturized high-precision sensors ⚙️Semiconductor Photonic Integration – Next-gen optical and electronic circuits 💡Patents & Commercialization – Bridging academia and industry for innovative applications 🚀

Publications

Flexible dynamic structural color based on an ultrathin asymmetric Fabry-Perot cavity with phase-change material for temperature perception

Lithography-free flexible perfect broadband absorber in visible light based on an all-dielectric multilayer structure

 

Conclusion:

Jianchun Zhao is a highly suitable candidate for the Research for Young Scientist Award, given his outstanding contributions to micro-nano optics, MEMS sensor fabrication, and electrochromic devices. His impressive publication record, patent portfolio, and leadership role make him a strong contender. Strengthening international collaboration, securing large-scale funding, and expanding public engagement would further solidify his profile as a leading young scientist in the field.

Gérard Gouesbet | Interaction light | Lifetime achievement Award

Prof. Gérard Gouesbet | Interaction light | Lifetime achievement Award

Prof.Emeritus at Interaction light/particles, France

Gérard Gouesbet (b. 1947) is a Professor Emeritus at INSA Rouen, France, known for his pioneering work in generalized Lorenz-Mie theory (GLMT) and laser-light interactions with particles. He has contributed extensively to optics, scattering theory, and computational physics, with over five decades of research and academic excellence. Gouesbet has held prestigious positions in French and international universities, authored influential publications, and played a key role in advancing particle-scattering methodologies. His work has gained global recognition, making him a highly cited researcher in applied optics and aerosol physics.

Publication Profile

scopus

🎓 Education

1977 – State Doctorate in Physics, Rouen University 1973 – PhD in Physics, Rouen University  1971 – Master’s in Physics, Rouen University  1970 – Bachelor in Physics, Rouen University  1969 – Licence in Physics & Physico-Chemistry, Rouen University 🏫

👨‍🏫 Experience

2007-Present – Professor Emeritus, INSA Rouen  2001-2007 – Exceptional Class Professor (2nd Level), Rouen University  1997-2001 – Exceptional Class Professor (1st Level), Rouen University  1983-2003 – Founder & Director, LESP Laboratory  1975-1983 – CNRS Researcher & Postdoc at Imperial College & Sheffield University 1968-1971 – Boarding-School Master, Rouen University 🏫

🏆 Awards & Honors

Top 2% Most Cited Researchers (Stanford/Elsevier)  Knight of Academic Palms (France)  Gold Medallion – Wroclaw University (1995)  Van de Hulst Award (2020)  IAAM Award Lecture (2019) Honorary Professor – China 🇨🇳 Best Paper Awards – JOSA, Xidian University, Applied Optics 🏅 Outstanding Reviewer – Optics Communications, JQSRT (2016-2018)

🔬 Research Focus

Generalized Lorenz-Mie Theory (GLMT) for light scattering  Laser-light interactions with particles in fluid and aerosol systems 🔬 Computational physics & wave scattering simulations  Optical particle characterization for biomedical & atmospheric sciences   Non-spherical particle behavior in electromagnetic fields 📡 Advancement of theoretical optics and experimental validation ⚛️

Publications 📖

Eliminating blowing-ups and evanescent waves when using the finite series technique in evaluating beam shape coefficients for some T-matrix approaches, with the example of Gaussian beams

Citations 1

Finite series approach for the calculation of beam shape coefficients in ultrasonic and other acoustic scattering

Citations 3

Conclusion

Prof. Gérard Gouesbet is a highly deserving candidate for the Best Researcher Award, given his decades of contributions, international recognition, and leadership in photonics and optical science. His research has transformed the field of laser-light interactions, making him a strong contender for this prestigious honor.

Jianzhi Li | Fiber sensing | Best Researcher Award

Prof. Jianzhi Li | Fiber sensing | Best Researcher Award

 professor at Shijiazhuang Tiedao University,  china

Jianzhi Li is a Professor at the Key Laboratory of Structural Health Monitoring and Control, Shijiazhuang Tiedao University, specializing in fiber sensing technology and structural health monitoring. 🌉 She earned her Ph.D. from Beijing Jiaotong University and later held an academic post at Osaka University, Japan. 🚄 Her work focuses on enhancing railway infrastructure safety through innovative sensing techniques. 📚 Jianzhi has published numerous SCI papers and authored several books. 🚀 Her groundbreaking contributions in the field have earned her multiple awards, cementing her status as a leading researcher in fiber optics and structural health.

Publication Profile

orcid

Education 🎓

Jianzhi Li earned her Ph.D. in Structural Diagnosis and Optimization from Beijing Jiaotong University in 2009. 📚 Her doctoral studies focused on identifying and solving complex structural challenges in engineering. 🌏 She further broadened her academic horizons by serving as an Associate Professor at Osaka University in Japan between 2014 and 2015. 🏛️ This role allowed her to collaborate internationally and enhance her expertise in fiber optic sensing technology. ✨ Throughout her education, she gained deep insights into the intersections of structural health and smart material technologies, which now form the cornerstone of her research endeavors.

Experience 🏢 

Jianzhi Li currently serves as a Professor at Shijiazhuang Tiedao University’s Key Laboratory of Structural Health Monitoring and Control. 🚇 She has led several high-impact projects, particularly in fiber optic sensing and structural health monitoring for railways and bridges. 🌉 During 2014–2015, she was an Associate Professor at Osaka University, contributing to international collaborations. 📊 With over 20 patents to her name and numerous published works in prestigious journals, her experience spans industry-relevant research and cutting-edge academic advancements. 💼 She also leads the China National Key Research and Development Program, contributing to the enhancement of railway infrastructure safety.

Awards and Honors  🏆

Jianzhi Li has received numerous awards, including the First Prize for Technological Invention in Hebei Province. 🌟 She was recognized with the “Best Paper” award at the 6th International Conference on Optoelectronic Sensing. 🎖️ Her outstanding research contributions have earned her prestigious honors such as the Hebei Outstanding Youth Talent Award and a place in the Hebei 333 Talent Program. 📜 She has authored three books, including an internationally recognized English-language textbook, and her innovative work in fiber sensing and structural health has placed her among the top researchers in China. 🌍 Her membership in the Chinese Optical Society and other professional groups reflects her impact on the scientific community.

Research Focus🔬

Jianzhi Li’s research is centered on fiber optic sensing technologies and structural health monitoring. 🚇 Her work addresses critical infrastructure challenges, including heavy-duty railway bridges and roadbeds. 🔧 She has been instrumental in advancing fiber-based sensing systems for monitoring railway hazards and enhancing safety through predictive detection. 🛰️ Her research extends to smart materials and their applications in dynamic environments, focusing on the early detection of structural anomalies. 🚀 Jianzhi’s contributions are practical and forward-looking, pushing the boundaries of electromagnetic and optical sensing in engineering, leading to the development of more robust and resilient civil structures.

Publication  Top Notes

Evaluation of Concrete Carbonation Based on a Fiber Bragg Grating Sensor
📅 Published: December 2023
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi15010029
Contributors: Jianzhi Li, Haiqun Yang, Handong Wu

This paper introduces a novel approach for monitoring concrete carbonation using Fiber Bragg Grating (FBG) sensors, a crucial method for assessing structural durability.

A Long-Term Monitoring Method of Corrosion Damage of Prestressed Anchor Cable
📅 Published: March 2023
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi14040799
Contributors: Jianzhi Li, Chen Wang, Yiyao Zhao

This research presents a long-term monitoring technique for detecting corrosion in prestressed anchor cables, improving infrastructure safety and longevity.

A Combined Positioning Method Used for Identification of Concrete Cracks
📅 Published: November 2021
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi12121479
Contributors: Jianzhi Li, Bohao Shen, Junjie Wang

This paper discusses a hybrid method for accurately identifying concrete cracks, advancing structural health monitoring.

A Spiral Distributed Monitoring Method for Steel Rebar Corrosion
📅 Published: November 2021
📰 Journal: Micromachines
🌐 DOI: 10.3390/mi12121451
Contributors: Jianzhi Li, Yiyao Zhao, Junjie Wang

Conclusion

Professor Jianzhi Li stands out as a strong candidate for the Best Researcher Award due to her exemplary research contributions, innovative spirit, and recognized leadership in the field of fiber sensing and structural health monitoring. Her achievements reflect not only her commitment to advancing science and technology but also her potential to further influence the field. With targeted improvements in professional engagement and industry collaboration, she could amplify her impact even more.