Baolei Guo | Vascular Surgery | Best Researcher Award

Assoc Dr.  Department of Vascular Surgery, Zhongshan Hospital Fudan University, china

Dr. Baolei Guo is an Associate Professor at Fudan University and an Attending Doctor in the Department of Vascular Surgery at Zhongshan Hospital, Fudan University, where he has served since 2017. He earned his MD and Ph.D. from Shanghai Medical College, Fudan University, and has been involved in numerous research projects, focusing on vascular surgery, medical imaging, and device development. Dr. Guo has received multiple prestigious grants, including the Health Youth Talent Training Program and the National Natural Science Foundation of China Youth Fund. His work is published in top journals, highlighting innovations in vascular surgery and imaging techniques.

 

Professional Profiles:

 

🏢 Employment

Associate Professor, Fudan University (03/2023-present)Attending Doctor, Department of Vascular Surgery, Zhongshan Hospital Fudan University (10/2020-present)Resident Doctor, Department of Vascular Surgery, Zhongshan Hospital Fudan University (07/2017-10/2020)Resident Doctor, Department of Anesthesiology, Zhongshan Hospital Fudan University (07/2013-09/2014)

🎓 Education Experience

Shanghai Medical College, Fudan UniversityMD, PhD (2014-2017)Department of Chemical Engineering, Imperial College LondonPhD Visiting Scholar (2016-2017)Shanghai Medical College, Fudan UniversityMSc (2010-2013)Hebei Chengde Medical CollegeBSc (2005-2010)

💰 Current Grants

Health Youth Talent Training Program of Shanghai Municipal Health Commission2022YQ013, 2023/01-2025/12, 300,000¥, PIShanghai “Medical Academy Rising Star” Youth Medical Talent Training Funding ProgramR2021-016, 2022/01-2024/12, 100,000¥, PI

Dr. Baolei Guo for the Best Researcher Award

Strengths for the Award:

  1. Extensive Research and Publications: Dr. Baolei Guo has an impressive record of publications in prestigious journals like European Journal of Vascular and Endovascular Surgery, Journal of Vascular Surgery, and IEEE Transactions on Biomedical Engineering. His research primarily focuses on vascular surgery, particularly on aortic dissection, endovascular repair, and imaging technologies, which are highly relevant to advancements in vascular health.
  2. Leadership in Research Projects: As the Principal Investigator (PI) for multiple significant grants, Dr. Guo has demonstrated strong leadership and innovation in his field. His involvement in pioneering projects such as the study of PET-CT/4D-PCMR combined with IVUS multimodal imaging technology and the development of plaque surface cleaning devices during CAS highlights his commitment to improving surgical outcomes and patient care.
  3. International Collaboration and Recognition: Dr. Guo’s international experience as a visiting scholar at Imperial College London, coupled with his collaboration with researchers globally, underlines his recognition in the academic community. This global perspective enhances the impact and applicability of his research in diverse healthcare settings.
  4. Clinical Expertise: With extensive clinical experience as an attending and resident doctor in vascular surgery, Dr. Guo bridges the gap between research and practice. His work directly influences clinical procedures, making his research highly translational and impactful.
  5. Innovative Approach: Dr. Guo’s research integrates advanced imaging techniques and computational modeling, contributing to the development of cutting-edge technologies in vascular surgery. His work on creating a swine model for type B aortic dissection and his studies on the hemodynamics of vascular diseases exemplify his innovative approach.

Areas for Improvement:

  1. Broader Dissemination of Research: While Dr. Guo has a robust publication record, expanding his reach through more public-facing platforms, such as conferences, seminars, or involvement in international committees, could further enhance his visibility and influence in the global research community.
  2. Collaboration with Industry: Engaging with the medical device industry for the translation of his research into commercially viable products could significantly boost the practical application of his work. This would also open avenues for securing additional funding and enhancing the real-world impact of his research.
  3. Diversity of Research Topics: While Dr. Guo has established expertise in vascular surgery, exploring related fields such as cardiovascular biomaterials or regenerative medicine could diversify his research portfolio and contribute to a more comprehensive approach to vascular health.

 

✍️Publications Top Note :

  • Fauzi, M.F.M., Johari, N.H., Mokhtarudin, M.J.M., Yusoff, B.M., Guo, B.
    Fluid-Structure Interaction Modelling of Blood Flow in Peripheral Arterial Disease.
    Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2024, 119(1), pp. 117–133.
  • Gao, P., Guo, B., Zhang, M., Dai, X., Liu, H.
    Modeling Method of Aortic Homeostasis Considering Three-Dimensional Residual Deformation.
    Yiyong Shengwu Lixue/Journal of Medical Biomechanics, 2024, 39(3), pp. 510–517.
  • Zhang, S., Guo, B., Hu, M.
    Some Reflections on Investigating the Long Term Healthy Life Quality of Acute Type B Aortic Dissection Patients.
    European Journal of Vascular and Endovascular Surgery, 2024, 67(3), pp. 524–525.
  • Guo, B., Chen, C., Li, Y., Fu, W., Zhang, W.W.
    Principles of Optimal Antithrombotic Therapy for Iliac Venous Stenting (POATIVES): A National Expert-Based Delphi Consensus Study.
    Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2024, 12(2), 101739.
  • Armour, C., Guo, B., Saitta, S., Dong, Z., Xu, X.Y.
    The Role of Multiple Re-Entry Tears in Type B Aortic Dissection Progression: A Longitudinal Study Using a Controlled Swine Model.
    Journal of Endovascular Therapy, 2024, 31(1), pp. 104–114.
  • Wang, K., Armour, C.H., Guo, B., Dong, Z., Xu, X.Y.
    A New Method for Scaling Inlet Flow Waveform in Hemodynamic Analysis of Aortic Dissection.
    International Journal for Numerical Methods in Biomedical Engineering, 2024.

Conclusion:

Dr. Baolei Guo stands out as a strong candidate for the Best Researcher Award due to his significant contributions to vascular surgery research, his leadership in innovative projects, and his integration of clinical expertise with research. By expanding his research dissemination efforts and fostering collaborations with industry, Dr. Guo could further elevate his impact in the field. His work not only advances scientific knowledge but also directly improves patient outcomes, making him a deserving contender for this prestigious award.

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian , Northwestern Polytechnical University, China

Dr. Jie Jian is a distinguished PostDoc in Materials Science at Northwestern Polytechnical University, specializing in photoelectrodes and photocatalysts. With expertise in nanomaterial synthesis and advanced film processing technologies, Dr. Jian has significantly contributed to the field through innovative research and optimization strategies. His academic journey includes a PhD and M.S. from NPU, focusing on BiVO4-nanocrystals and SiC ceramic composites, respectively, and a B.S. from Chongqing University. Dr. Jian has also gained industry experience as an engineer at Samsung Semiconductor. His work is characterized by a profound understanding of material characterization and software proficiency.

 

Professional Profiles:

Google Scholar

 

🌟 Technical-Scientific Skills 🌟

Mastering Preparation, Testing, and Characterization of photoelectrodes (photoanodes and photocathodes) and photocatalysts, proposing optimization strategies based on photoelectrochemical principles.Expert in Synthesis of Nanomaterials using pulsed laser irradiation in liquid and wet-chemical methods, and proficient in the design, synthesis, and functional exploration of porous materials.Film Processing Technologies: Skilled in spin coating, dip coating, chemical baths, electrodeposition, magnetron sputtering, and ALD.Material Characterization: Proficient in TEM, SEM, AFM, Raman, BET, UV-vis, XPS, XRD, FTIR.Software Proficiency: Photoshop, 3D-Max, Origin, Endnote, VESTA, Gatan, CAD, ChemDraw, Athena.

📚 Academic Education and Career 📚

03/2022-present
PostDoc in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Project: In-situ Embedding Nanocrystals/Clusters in Porous Materials for Efficient Photo(electro)catalysis09/2016-03/2023
PhD in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Thesis Title: Laser Derived Films of BiVO4-Nanocrystals for Efficient Photoelectrochemical Water Splitting04/2015-08/2016
Engineer, Samsung (China) Semiconductor Co., Ltd., Xi’an, China (SCS)
Task: Process controlling and equipment monitoring during chemical vapor deposition.09/2012-03/2015
M.S. in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Laifei Cheng
Thesis Title: Strengthening and Toughening of Laminated (SiCp+SiCw)/SiC Ceramic Composites09/2008-07/2012
B.S. in Materials Science and Engineering, Chongqing University (CQU)
Supervisor: Prof. Baifeng Luan
Thesis Title: Study on deformation structure and texture of pure zirconium with large grain size rolled at liquid nitrogen temperature
GPA: 3.55/4
Ranking: 3/72

📖 Publications Top Note :

Embedding Laser-Generated Nanocrystals in BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
J Jian, Y Xu, X Yang, W Liu, M Fu, H Yu, F Xu, F Feng, L Jia, D Friedrich, …
Nature Communications 10 (1), 2609 (2019)
Citations: 160

Recent Advances in Rational Engineering of Multinary Semiconductors for Photoelectrochemical Hydrogen Generation
J Jian, G Jiang, R van de Krol, B Wei, H Wang
Nano Energy 51, 457-480 (2018)
Citations: 160

Black BiVO4: Size Tailored Synthesis, Rich Oxygen Vacancies, and Sodium Storage Performance
X Xu, Y Xu, F Xu, G Jiang, J Jian, H Yu, E Zhang, D Shchukin, S Kaskel, …
Journal of Materials Chemistry A 8 (4), 1636-1645 (2020)
Citations: 67

Porous CuBi2O4 Photocathodes with Rationally Engineered Morphology and Composition Towards High-Efficiency Photoelectrochemical Performance
Y Xu, J Jian, F Li, W Liu, L Jia, H Wang
Journal of Materials Chemistry A 7 (38), 21997-22004 (2019)
Citations: 61

Ordered Porous BiVO4 Based Gas Sensors with High Selectivity and Fast-Response Towards H2S
C Li, X Qiao, J Jian, F Feng, H Wang, L Jia
Chemical Engineering Journal 375, 121924 (2019)
Citations: 59

Mr. Basant Lal | Materials Characterization | Young Scientist Award

Mr. Basant Lal | Materials Characterization
| Young Scientist Award

Mr. Basant Lal , NIT SRINAGAR, India

Mr. Basant Lal is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Scopus

Professional Objective 🎯

Highly motivated, adaptable, and goal-oriented researcher seeking a position in the fields of Tribology (Nano-Micro-Macro), Surface Engineering, Bio-Materials, Metal Matrix Nano-composites, Interface Analysis, Spark Plasma Sintering Technology, Mechanical Behavior of Materials, and the Characterization and Mechanical Property Evaluation of Advanced Materials.

Education Qualifications 📚

Ph.D. in Mechanical Engineering
Dec 2019 – April 2024, Srinagar, India
National Institute of Technology, Srinagar
Thesis: “Microstructural Evaluation and Tribological Characteristic of Ti-6Al4V/TiC Composite Used for Hip Implant”
Supervisors: Dr. Abhijit Dey & Prof. M.F. WaniM.Tech in Mechanical Engineering
2014 – 2016, Srinagar, India
National Institute of Technology, Srinagar
Thesis: “Tribological Behaviors of Titanium and Its Alloys (Ti-6Al-4V)”
Supervisors: Prof. M.F. Wani & Prof. Satish Vasu Kailas, Indian Institute of Science, BangaloreB.Tech in Mechanical Engineering
2008 – 2012, Haryana, India
MDU University, Haryana
Project: “Anti-Lock Braking System”

Industrial Experience 💼

Indian Institute of Science (IISc), Bangalore
Research Project: Tribological Behaviors of Titanium and Its Alloys (Ti-6Al-4V)Talbros Automotive Components Ltd.
Position: Production Engineer
Role: Managing operations involving production plans & schedules and developmental workYKK Company
Summer Training: Slider DepartmentJai Bharat Maruti Ltd.
Summer Training: Wear and friction behavior of steel against aluminum pin under lubricated conditionsLotus Auto Engineering Ltd.
Summer Training: Machining Department

Materials Characterization Techniques 🔬

Optical Microscopy (OM)3D Optical ProfilometerField Emission Scanning Electron Microscopy (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS)Nano-Indentation TechniqueRaman SpectroscopyWXRFX-ray Diffraction (XRD)Mechanical and Tribological Characterization Techniques

Strengths and Hobbies 🌟

Positive Attitude and Good Learning Skills
Hobbies: Writing Short StoriesGood Leadership Quality
Hobbies: Painting and SketchingAbility to Work in a Team
Hobbies: SingingInquisitiveness
Hobbies: Playing Puzzle Games

Membership of Professional Bodies/Organizations 👥

Life Member, Tribology Society of India (TSI)Professional Member, Institute of Scholars (InSc)Member, International Association of Engineers (IAENG)

Workshops and Short-Term Courses 🎓

Advanced Materials for Structural Applications
IIT Indore (29th Sep – 4th Oct 2020)Advanced Welding Technologies and Failure Analysis
IIT Indore (19th – 24th Sept 2020)Additive Manufacturing
NIT Srinagar (31st Aug – 9th Sep 2020)Recent Advances in Nano-Science and Technology (RANN-2020)
NIT Srinagar (24th – 28th Aug 2020)Recent Advances in Tribology and Surface Engineering SeriesSeries 1 of 4: Introduction to Tribology and Surface Engineering, Saintgits College of Engineering, Kottayam (23rd – 28th Nov 2020)Series 4 of 4: Surface Characterization and Treatment in Tribology, Saintgits College of Engineering, Kottayam (17th – 22nd Aug 2020)Series 2 of 4: Tribology of Machine Components and Applied Tribology, Saintgits College of Engineering, Kottayam (14th – 19th Sep 2020)

National/International Conferences Organized 🏆

Organizer Committee, “Tribo-India 2023”
Dept. of Mechanical Engineering, National Institute of Technology, Srinagar, IndiaOrganizer Committee, “1st Indo-Russian International Symposium 2022”
Dept. of Mechanical Engineering, National Institute of Technology, Srinagar, India

📖 Publications Top Note :

1. Effect of TiC Nano-Particle on Microstructure Evolution and Tribological Behaviour of Ti6Al4V Composites Fabricated via Spark Plasma Sintering

Authors: Lal, B., Dey, A.
Journal: Tribology International, 2024, 197, 109775

2. Fretting Wear Characteristics of Ti6Al4V/TiC Nano Composites Using Response Surface Method

Authors: Lal, B., Dey, A.
Journal: Tribology International, 2024, 193, 109412

3. Influence of TiCp Ceramic Reinforcement on Ti6Al4V Alloy Matrix via Spark Plasma Sintering Technique

Authors: Lal, B., Dey, A., Wani, M.F.
Journal: Advances in Materials and Processing Technologies, 2024

4. Effect of Frictional Heating on Mechanically Mixed Layers During Dry Sliding Contact of Ti-6Al-4V Alloys at High Temperature in Vacuum Condition

Authors: Lal, B., Dey, A., Wani, M.F.
Journal: Surface Review and Letters, 2022, 29(10), 2250127

5. Advances in Gravimetric Electronic Nose for Biomarkers Detection

Authors: Das, A., Lal, B., Manjunatha, R.
Journal: Series on Biomechanics, 2022, 36(2), pp. 128–140

6. Prediction of Surface Roughness During Dry Sliding Wear: Characteristics of Ti-6Al-4V Alloys

Authors: Lal, B., Dey, A., Wani, M.F.
Journal: International Journal of Surface Engineering and Interdisciplinary Materials Science, 2022, 10(1)

7. Dry Sliding Wear Behaviour of Ti–6Al–4V Pin Against SS316L Disc in Vacuum Condition at High Temperature

Authors: Kumar, D., Lal, B., Wani, M.F., Philip, J.T., Kuriachen, B.
Journal: Tribology – Materials, Surfaces and Interfaces, 2019, 13(3), pp. 182–189