Dr. Qiaoxuan Zhang | Nanomaterials | Best Researcher Award
Professor | Hebei University | China
Dr. Qiaoxuan Zhang is a faculty member in the Department of Electrical Engineering and Automation at Hebei University of Water Resources and Electric Engineering. With a strong academic foundation in physics and electronic science, she has developed expertise in two-dimensional materials, nanoelectronics, and energy storage applications. She earned her PhD at Beijing University of Posts and Telecommunications, where she focused on advanced materials for electronic and optoelectronic devices. Her research explores cutting-edge topics such as van der Waals heterostructures, electronic transport in two-dimensional semiconductors, and electrode materials for lithium-ion batteries. She has published high-quality first-authored papers in international journals, contributing new insights into nanoscale device engineering and quantum transport phenomena. As a young scholar, Dr. Zhang is committed to combining theoretical modeling with experimental advancements, aiming to bridge material innovations with practical electronic applications. Her teaching role reflects her dedication to mentoring students and advancing research in applied physics and nanoelectronics.
Professional Profile
Education
Dr. Zhang’s academic journey reflects a steady pursuit of excellence in physics and electronic science. She began her higher education at Jilin University, where she studied Physics as an undergraduate, gaining a solid foundation in quantum mechanics, materials physics, and solid-state electronics. Motivated by her strong interest in electronic materials, she pursued graduate studies at the Beijing University of Posts and Telecommunications (BUPT). she engaged in postgraduate coursework in Electronics Science and Technology, strengthening her expertise in electronic devices and nanotechnology. She then advanced to a PhD program at where her research focused on the theoretical and computational design of two-dimensional materials and their applications in electronic devices and energy storage systems. During this period, she published several influential papers and collaborated with leading experts in the field, which laid the groundwork for her career as a researcher and educator.
Experience
After completing her doctoral studies, Dr. Zhang joined the Hebei University of Water Resources and Electric Engineering as a permanent teaching staff member in the Department of Electrical Engineering and Automation. In her academic role, she combines research with teaching, offering students both theoretical grounding and exposure to current advances in material science and nanoelectronics. Her teaching responsibilities include subjects related to electronics, semiconductor physics, and automation, where she emphasizes critical thinking and research-oriented learning. In parallel, she continues her research in low-dimensional materials, device simulations, and novel electrode designs for energy storage applications. She has contributed significantly to the understanding of two-dimensional electronic materials and their interfaces, advancing next-generation transistor and memory device concepts. Through active engagement in international scientific publications, collaborations, and student supervision, she has established herself as a promising scholar dedicated to both scientific innovation and the training of future engineers and scientists.
Research Focus
Dr. Zhang’s research centers on two-dimensional materials, electronic devices, and energy storage systems. Her work addresses fundamental and applied challenges in the design and optimization of van der Waals heterostructures, nanoelectronic devices, and magnetic tunnel junctions. She investigates the physical mechanisms governing charge transport, interlayer interactions, and interface engineering in low-dimensional materials, with applications in transistors, memory devices, and spintronic systems. Another strand of her research explores the role of advanced materials in lithium-ion batteries, focusing on metallic and composite nanostructures that enhance energy storage efficiency and stability. She employs a combination of first-principles calculations, simulations, and experimental collaborations, aiming to bridge theory with practical device implementation. Her research contributions are published in high-impact journals, and she actively seeks to expand the scope of nanoelectronics into sustainable energy technologies. Through this focus, Dr. Zhang contributes to the growing field of next-generation electronics and renewable energy solutions.
Awards and Honors
Dr. Zhang has received recognition for her scholarly achievements during her academic and professional career. At Beijing University of Posts and Telecommunications, she earned commendations for academic excellence and research contributions, particularly for her work in two-dimensional materials and electronic devices. Her doctoral research produced several first-authored publications in leading journals such as Nanotechnology, ACS Applied Nano Materials, and Nanomaterials, which established her reputation as a rising researcher in the field of nanoelectronics and material sciences. Her work on metallic MoN layers for lithium-ion batteries and 2D/2D electrical contacts in WSe₂ transistors has been particularly noted for its innovative approach and impact on energy and electronic applications. These accomplishments have positioned her as a valuable contributor to interdisciplinary material research. In her current role, she continues to pursue excellence in teaching and research, striving to integrate her academic achievements into educational development and practical technological advancements.
Publication Top Notes
Memristive feature and mechanism induced by laser-doping in defect-free 2D semiconductor materials
Citations: 3
Year: 2024
Conclusion
Both TieJun demonstrate potential as researchers in their respective fields. TieJun Ge’s extensive research experience and publication record make him a strong candidate for the Best Researcher Award. Qiaoxuan Zhang’s research experience and publications in reputable journals also demonstrate her potential. With further development of interdisciplinary collaboration and evaluation of citation impact, they could become even stronger candidates for the award.