Professor at Zeal College of Engineering and Research, Pune
🎓 Dr. Rakesh A. Afre is a distinguished researcher in nanotechnology with a Ph.D. from Nagoya Institute of Technology, Japan. 📡 His groundbreaking thesis focused on synthesizing carbon nanotubes via spray pyrolysis and their application in solar cells. 🌞 With extensive global experience, he has contributed to leading-edge research on photovoltaic devices, flexible electrodes, and sustainable energy materials. 🏅 A prolific academic and innovator, Dr. Afre’s work is highly cited, boasting an h-index of 20.
Publication Profile
orcid
Education 🎓
Ph.D. in Nanotechnology, Nagoya Institute of Technology, Japan (2007) Thesis: Synthesis of Carbon Nanotubes for Solar Cells M.Sc. in Physics (Energy Studies), North Maharashtra University, India (2001) Thesis: SnO₂ Thin Films for Anti-Reflection Coatings B.Sc. in Physics, North Maharashtra University, India (1999)
Professional Experience 👨🏫
Professor, ZCOER Pune (2024-) Project Head, Mirai Japanese Language Center (2024-) Deputy Director, Research & Innovation, Assam down town University (2022-2024 Researcher, Flinders University, Australia (2012-2014 Senior Researcher, KRICT, South Korea (2010-2012) Postdoctoral Fellow, Nagoya Institute of Technology (2007-2010)
Awards & Honor🏆
Gold Medal for inventions in nanotechnology, IID 2007 Japan Government Scholarship, Nagoya Institute of Technology (2003-2007) Reviewer for prestigious journals like Thin Solid Films and Materials Design Member of Materials Research Society (MRS), ACS, and IAENG
Research Focus🔬
Carbon nanotubes for solar energy and nanotechnology Development of organic photovoltaic devices Transparent electrodes for flexible applications Nanodroplet pyrolysis for eco-friendly materials
Publications 📖
Title: Transparent conducting oxide films for various applications: A review
Publication: Reviews on Advanced Materials Science, 2018
Citations: 358
Summary: A comprehensive review of transparent conducting oxides (TCOs) used in optoelectronics, photovoltaics, and display technologies. The paper highlights advancements in material properties, fabrication methods, and applications.
Major Contributions:
Eucalyptus Oil as a Precursor
Title: A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil
Publication: Materials Letters, 2007
Citations: 139
Turpentine Oil as a Feedstock
Title: Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil
Publication: Chemical Physics Letters, 2005
Citations: 128
Title: Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies
Publication: Microporous and Mesoporous Materials, 2006
Citations: 126
Hybrid Solar Cells
Title: Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes
Publication: Journal of Physics D: Applied Physics, 2009
Citations: 89
Hydrogen Storage
Title: Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials
Publication: International Journal of Hydrogen Energy, 2007
Citations: 72
Functionalization of Carbon Nanotubes
Title: Functionalization of multi-walled carbon nanotubes (MWCNTs) with nitrogen plasma for photovoltaic device application
Publication: Current Applied Physics, 2009
Citations: 61
Transparent Electrodes
Title: Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes
Publication: Science and Technology of Advanced Materials, 2013
Citations: 56
Perovskite Solar Cells
Title: Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies
Publication: Micromachines, 2024
Citations: 44
Conclusion
The candidate is exceptionally qualified for the Research Excellence Award due to their significant contributions to nanotechnology, demonstrated by their academic rigor, impactful research, and leadership in innovation. With strategic efforts in broadening interdisciplinary collaborations, enhancing public engagement, and diversifying research applications, they can further strengthen their standing as a leading figure in the field. Their credentials and achievements make them a compelling nominee for this prestigious recognition.