Hui Wang | nano functional materials | Best Researcher Award

Assoc. Prof. Dr Hui Wang | nano functional materials | Best Researcher Award

Deputy Director, Soochow University, China

👩‍🏫 Associate Professor at Soochow University’s National Engineering Laboratory for Modern Silk, specializing in 🧪 nano- and micro-scale biomaterials, surface interfaces, and biomaterial surface properties. Earned her 🎓 Ph.D. in Physical Chemistry from Xiamen University and conducted 🔬 postdoctoral research at the National University of Singapore. With 📚 20+ publications in high-impact journals, she has received prestigious research grants and awards for her contributions to 🔍 biomaterials science and textile engineering.

Profile

scopus

Education 🎓

📍 Ph.D. in Physical Chemistry – Xiamen University, China (2003-2009) B.Sc. in Chemistry – Xiamen University, China (1999-2003)

Experience 💼

📍 Research Fellow – National University of Singapore, Department of Physics (2009-2010) 📍 Associate Professor – Soochow University (2011-Present)

Awards & Honors 🏆

🥈 Second Prize – Fujian Science & Technology Progress Award (2009) 🥈 Second Prize – Xiamen Science & Technology Progress Award (2009)

Research Focus 🔬

🧪 Nano- and micro-scale biomaterials | 🌊 Surface & interface science | ⚙️ Biomaterial surface properties & biological interactions

Publications

Ultrafast Deposition Kinetics in Bi-Tailored Core-Shell Carbon Nanofibers for Sodium Metal Batteries
📍 Angewandte Chemie – International Edition, 2025
📚 Co-authors: M. Yuan, H. Wang, T. Xu, X. Bai, H. Park

2️⃣ Versatile Thermally Activated Delayed Fluorescence (TADF) for Photodynamic Therapy & NIR Electroluminescence 💡
📍 ACS Nano, 2025
📚 Co-authors: H. Wang, Y. Gao, J. Chen, C.S. Lee, X. Zhang

3️⃣ NiSe₂-MoSe₂ Heterojunctions on N-Doped Porous Carbon for Electrocatalytic Water Splitting 💧
📍 Journal of Colloid and Interface Science, 2025
📚 Co-authors: H. Zhou, D. Kong, N. Chu, Y. Wang, T. Xu

4️⃣ Stepwise One-Shot Borylation for High-Efficiency Yellow-Green OLEDs (EQE > 40%) 🖥️
📍 Angewandte Chemie – International Edition, 2025
📚 Co-authors: X. Xiong, T. Chen, R. Walia, K. Wang, X. Zhang

5️⃣ D–A Type Red TADF Molecules for High-Efficiency Red/NIR OLEDs 🎨
📍 Advanced Functional Materials, 2025
📚 Co-authors: H. Wang, S. Lin, J. Chen, K. Wang, X. Zhang

6️⃣ Organoboron-Nitrogen-Carbonyl Hybrid Emitters for High-Performance Red OLEDs 🔴
📍 Advanced Optical Materials, 2025
📚 Co-authors: Y. Cheng, R. Walia, T. Zhang, K. Wang, X. Zhang

7️⃣ Donor–Acceptor & MR-TADF Core Integration for Outstanding Electroluminescence 🌟
📍 Advanced Materials, 2024 (Open Access)
📚 Co-authors: D. Chen, H. Wang, D. Sun, X. Zhang, E. Zysman-Colman

8️⃣ Ultra-High Photothermal Conversion Diradical Polymer for NIR-II Photo-Immunotherapy 🏥
📍 Nano (Open Access), 2024
📚 Co-authors: Y. Gao, Y. Liu, X. Li, S. Li, X. Zhang

Conclusion

Dr. Hui Wang is a strong candidate for the Best Researcher Award, given his expertise in nanomaterials, biomaterials, and surface/interface science. His high-impact publications, academic experience, and recognition in China make him highly deserving. Strengthening global collaborations, patents, and leadership in large-scale projects would further solidify his profile for international-level awards.

Yu Wang | carbon dots | Best Researcher Award

Assoc. Prof. Dr Yu Wang | carbon dots | Best Researcher Award

Assoc. Prof. Dr at Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, China

Dr. Yu Wang (王昱) 🎓, born in Qingdao, China 🇨🇳 (Nov. 1984), is an Associate Professor at the Laboratory of Instrumentation and Analytical Chemistry, Dalian Institute of Chemical Physics (DICP), CAS. With a Ph.D. from Kyungpook National University 🇰🇷 and postdoctoral work at DICP, he specializes in designing cutting-edge chemical sensing materials 🌟. As Secretary General of the CAS Youth Innovation Promotion Association (Shenyang Branch) and a prominent academic leader, Dr. Wang has earned international recognition for his research on carbon dots and their applications.

Publication Profile

scholar

Education🎓

B.S. (2003–2007): Qingdao University, China Ph.D. (2009–2014): Kyungpook National University, South Korea 🇰🇷 Postdoctoral (2014–2016): Dalian Institute of Chemical Physics (DICP), CAS 🧪

Experience🧪

Associate Professor (2019–Present): Dalian Institute of Chemical Physics, CAS  Assistant (2016–2019): Dalian Institute of Chemical Physics, CAS 🌟

Honors and Awards🏆

Outstanding Foreign Student Award: KHS Scholarship, Kyungpook National University (2009–2012) 🌟 2nd Prize: Natural Science Achievement Award, Liaoning Province (2017) 2nd Prize: Technological Invention of Liaoning Province (2024, ranked 6/6) 🎉

Research Focus🔬

Controlled synthesis of carbonized polymer dots (carbon dots)  Surface/interface chemistry in carbon dots    Dye-incorporated and metal-doped carbon dots for applications 💡  Exploring quantum coherence effects in carbon dots 🌠

Publications 📖

Rapid detection of Cr (VI) ions 🌟: Cobalt (II)-doped carbon dots for Cr(VI) detection. Biosensors and Bioelectronics, 87, 46-52 (2017) 🧪.

Highly luminescent carbon dots 🌈: N, S-Co-doped carbon dots for Hg(II) sensing. Analytica Chimica Acta, 890, 134-142 (2015) 🧬.

Copper (I) bromide hybrids 🧡: Luminescent materials for optical applications. ACS Applied Materials & Interfaces, 11(19), 17513-17520 (2019) ⚡.

Dual-emission carbon dots 🧪: Cr(VI) assay platform. Carbon, 182, 42-50 (2021) 🌟.

Mn(II)-coordinated carbon dots 💡: Functionalized nanodots for VOC sensing. Chemistry – A European Journal, 21(42), 14843-14850 (2015) ✨.

NH3 leakage monitoring system 🚢: CNTs-PPy-based sensor for marine IoT. Nano Energy, 98, 107271 (2022) 🌊.

Self-powered ammonia sensor ⚡: Humidity-resistant CsPbBr3 perovskite nanocrystals. Talanta, 253, 124070 (2023) 💧.

Paper-based microfluidics 📄: Colorimetric Cu(II) detection. Talanta, 204, 518-524 (2019) 🧬.

Fluorometric chemosensors 🌈: Dual mercury (II) assay. Sensors and Actuators B: Chemical, 265, 293-301 (2018) ⚗️.

Advances in triboelectric sensors 🌊: Innovations in marine IoT. Nano Energy, 109316 (2024) 🚢.

Conclusion

Dr. Yu Wang is highly suitable for the Best Researcher Award due to his exceptional expertise in carbon dots, substantial research impact, and leadership roles in fostering innovation. His work has significantly advanced the understanding and applications of nanomaterials, earning recognition through prestigious awards. By broadening his collaborations and diversifying research focus, Dr. Wang could further enhance his global impact. His dedication and achievements make him a strong contender for the award, embodying the qualities of an outstanding researcher.

Peng Yang | Electronic Devices | Best Researcher Award

Dr. Peng Yang| Electronic Devices | Best Researcher Award

student at National University of Defense Technology, China

Peng Yang is a dedicated researcher pursuing a Ph.D. at the National University of Defense Technology, focusing on cutting-edge advancements in electronic science and technology. With an M.S. in Microelectronics and Solid-State Electronics from Sun Yat-Sen University, Peng has consistently demonstrated excellence in the fields of ferroelectric transistors, neuromorphic computing, optoelectronic devices, and biosensing. His passion lies in bridging theoretical knowledge with practical applications, driving innovation in emerging electronic technologies.

Publication Profile

orcid

📚 Education

🎓 M.S. in Microelectronics and Solid-State Electronics – Sun Yat-Sen University, Guangzhou, 2020🎓 Ph.D. Candidate in Electronic Science and Technology – National University of Defense Technology, Changsha (ongoing)
Peng’s academic journey reflects a strong foundation in microelectronics and an ongoing pursuit of deeper expertise in advanced electronic systems.

💼 Experience

🔬 Ph.D. Researcher – National University of Defense Technology (2020–Present)📡 Graduate Research Assistant – Sun Yat-Sen University (2018–2020)
Peng’s hands-on experience spans across semiconductor device design, fabrication, and innovative electronic component research.

🏆 Awards and Honors 

🏅 Best Paper Award – International Conference on Advanced Electronics (2022)🌟 National Scholarship for Academic Excellence (2019)🏆 Research Excellence Award – Sun Yat-Sen University (2020)
Peng’s dedication to his field is recognized by prestigious awards, celebrating his contributions and academic achievements.

🔍 Research Focus 

🔋 Ferroelectric Transistors🧠 Neuromorphic Computing💡 Optoelectronic Devices🩺 Biosensing Technologies
Peng Yang’s research drives the development of next-generation electronics, focusing on technologies that blend computational power with innovative sensing capabilities.

Publications 📖

Multistates and Ultralow-Power Ferroelectric Tunnel Junction by Inserting Al₂O₃ Interlayer
📅 IEEE Transactions on Electron Devices, 2025-01
🔗 DOI: 10.1109/TED.2024.3503533
👥 Contributors: Yefan Zhang, Shihao Yu, Peng Yang, Xiaopeng Luo, Hui Xu, Xi Wang, Haijun Liu, Sen Liu, Qingjiang Li

Fully Electrically Modulated Hetero-Synapses With Lateral Multigate Ferroelectric Thin Film Transistor
📅 IEEE Transactions on Electron Devices, 2024
🔗 DOI: 10.1109/ted.2024.3456775
👥 Contributors: Peng Yang, Hui Xu, Shihao Yu, Yang Liu, Bing Song, Haijun Liu, Sen Liu, Qingjiang Li

The Optical-Electronic Integrated Spiking Neurons Based on Antiferroelectric Thin-Film Transistors
📅 IEEE Transactions on Electron Devices, 2024
🔗 DOI: 10.1109/ted.2024.3450440
👥 Contributors: Luo Xiaopeng, Peng Yang, Yu Shihao, Xu Guo, Yefan Zhang, Yang Liu, Yi Sun, Yinan Wang, Sen Liu, Qingjiang Li

Tailoring Dynamic Synaptic Plasticity in FeTFT Optoelectronic Synapse for Associative Learning
📅 Advanced Electronic Materials, 2024-12-30
🔗 DOI: 10.1002/aelm.202400732
👥 Contributors: Peng Yang, Hui Xu, Xiaopeng Luo, Shihao Yu, Yang Liu, Yefan Zhang, Xu Guo, Bing Song, Zhiwei Li, Sen Liu

Inhibiting the Imprint Effect of the TiN/HZO/TiN Ferroelectric Capacitor by Introducing a Protective HfO2 Layer
📅 AIP Advances, 2024-08-01
🔗 DOI: 10.1063/5.0222725
👥 Contributors: Yu Shihao, Yefan Zhang, Peng Yang, Xiaopeng Luo, Zhenyuan Sun, Haijun Liu, Sen Liu

Multistate Capability Improvement of BEOL Compatible FeFET by Introducing an Al2O3 Interlayer
📅 IEEE Transactions on Electron Devices, 2023-11
🔗 DOI: 10.1109/ted.2023.3309776
👥 Contributors: Yu Shihao, Qin Wang, Yefan Zhang, Peng Yang, Xiaopeng Luo, Haijun Liu, Changlin Chen, Qingjiang Li, Sen Liu

A Large Memory Window and Low Power Consumption Self‐Rectifying Memristor for Electronic Synapse
📅 Electronics Letters, 2023-01
🔗 DOI: 10.1049/ell2.12717
👥 Contributors: Qingjiang Li, Shihao Yu, Peng Yang, Qin Wang, Sen Liu

Improved Symmetry of Ferroelectric Switching in HZO Based MFM Capacitors Enabled by High Pressure Annealing
📅 IEEE Journal of the Electron Devices Society, 2022
🔗 DOI: 10.1109/jeds.2022.3221727
👥 Contributors: Qin Wang, Yefan Zhang, Peng Yang, Rongrong Cao, Haijun Liu, Hui Xu, Sen Liu, Qingjiang Li

🔹 Conclusion

Peng Yang is a strong candidate for a Best Researcher Award, given his contributions to cutting-edge technologies and an impressive publication record. While his collaborative achievements stand out, focusing on individual accolades, project leadership, and public engagement will further bolster his eligibility. Overall, his research trajectory reflects immense promise, positioning him as a rising star in the field of microelectronics and solid-state devices.

Kaixi Shi | Two-dimensional materials | Best Researcher Award

Ms. Kaixi Shi | Two-dimensional materials | Best Researcher Award

lecturer at  Changchun University of Science and Technology, China

Chunde Piao is a distinguished researcher in the Department of Geological Engineering at the School of Resources and Geosciences, China University of Mining and Technology (CUMT). His expertise lies in coal mine geological engineering, focusing on health monitoring and stability analysis. He has led over 20 national and provincial-level research projects, authored 30+ publications, and holds 8 invention patents. His contributions to distributed fiber optic sensing technology have garnered him six prestigious awards, including the First Prize of the National Science and Technology Progress Award.

Professional Profiles:

scopus

🎓 Education

📜 Ph.D. in Geological Engineering, Nanjing University (2005-2008)🎓 M.S. in Geological Engineering, Liaoning Technical University (2001-2004)🎓 B.S. in Geological Engineering, Liaoning Technical University (1997-2001)

👨‍🔬 Experience

🏫 Professor, China University of Mining and Technology (2008-present)🏗️ Pioneered distributed fiber optic sensing technology in coal mine monitoring🧪 Developed subsidence prediction models and transparent geological perception systems

🏆 Awards and Honors

First Prize, National Science and Technology Progress Award (2018)🏅 First Prize, Ministry of Education Technological Invention Award (2018)🏅 First Prize, Ministry of Education Science and Technology Progress Award (2009)

🔍 Research Focus

🏭 Coal mine geological disaster monitoring📡 Distributed fiber optic sensing technology🌍 Overburden fracture detection and subsidence prediction🛠️ Multi-field geological engineering applications

✍️Publications Top Note :

Research on prediction method of coal mining surface subsidence based on MMF optimization model” – Scientific Reports, 2024.

“Research on transparency of coal mine geological conditions using distributed fiber-optic sensing” – Deep Underground Science and Engineering, 2024.

“Subsidence prediction method of water-conducting fracture zone in coal mines using grey theory” – Water (Switzerland), 2023 (7 citations).

“Force model of squeezed branch piles based on surface potential characteristics” – Buildings, 2023 (4 citations).

“Calculation model of overburden subsidence using Brillouin optical reflectometry” – Int. J. Rock Mechanics & Mining Sciences, 2021 (22 citations).

“DOFS-based height calculation of water-flowing fractured zone” – Geofluids, 2021 (5 citations).

“Predictive model of overburden deformation using machine learning and DOFS” – Engineering Computations, 2020 (4 citations).

“Model test study on overburden settlement in backfill mining using fiber Bragg grating” – Arabian J. Geosciences, 2019 (22 citations).

“Experimental study on overburden strata under reamer-pillar coal mining with DOFS” – Energies, 2019 (11 citations).

“Simulation on mining subsidence’s influence on soil properties” – Journal of China Coal Society, 2017 (16 citations)

Conclusion

Chunde Piao’s remarkable contributions to coal mine monitoring and geological engineering, coupled with his leadership in national projects and groundbreaking technological developments, make him an outstanding candidate for the Best Researcher Award. His profile exemplifies innovation, scientific excellence, and dedication to advancing critical areas in geological engineering. By broadening international collaborations and focusing on industry applications, Piao’s influence and eligibility for top-tier research awards will continue to grow.

Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Assoc Prof Dr. Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Yue Wang is an accomplished Assistant Professor at Xi’an Jiaotong University’s School of Material Science and Engineering. With a deep focus on nanomechanics and electrochemical reactions, his research has contributed significantly to materials science, particularly in magnesium alloys and battery technologies. Wang completed his Ph.D. in 2018, building on extensive hands-on experience with TEM and other nanotechnology techniques. He is a recipient of numerous prestigious awards and has several high-impact publications in journals like Nature Communications and Science. His work pushes the boundaries of materials science, enabling innovations in corrosion resistance and energy storage. 🧪📚🔬

 

Publication Profile

Education🎓📖🌍

Yue Wang holds a Ph.D. in Materials Science and Engineering from Xi’an Jiaotong University, where he started his studies in 2013. He completed a Bachelor’s in the same field from Northwestern Polytechnical University in 2013. He was also a visiting student at Lawrence Berkeley National Lab, University of California, Berkeley, from February 2017 to February 2018. During this period, he gained valuable exposure to cutting-edge research environments, broadening his knowledge of nanomaterials and real-time electrochemical reactions. His academic journey showcases a strong foundation in both theoretical and applied materials science.

Experience🏫🧑‍🏫🛠️

Yue Wang has been with Xi’an Jiaotong University’s School of Material Science and Engineering since 2018, where he now serves as a tenured Assistant Professor. Prior to his tenure, he worked extensively in in-situ environmental TEM and nanomechanical testing, producing significant contributions to battery technologies and corrosion resistance. His research focuses on Si-based materials, Mg alloys, and novel microscopy techniques. He also served as a Teaching Assistant at the university, where he taught the course on mechanical properties of materials. His career reflects a strong emphasis on research and education in materials science.

Awards and Honors🏆

Yue Wang has received several prestigious awards throughout his career. He was recognized for his high-impact contributions in materials science, including publishing in leading journals such as Science and Nature Communications. His innovative research in the field of nanomechanics and corrosion resistance has earned him multiple research grants and distinctions within academic circles. He has also been an invited speaker at several international conferences, where his work on Si-based materials and Mg alloys has been widely lauded. His dedication to pushing the boundaries of materials research continues to earn him accolades. 🥇🎖️

Research Focus 🔬🧲📐

Yue Wang’s research is primarily centered on the mechanical properties and nanostructures of Si-based materials and metals. His work utilizes in-situ quantitative nanomechanics to probe these materials at the micro and nano levels. Wang’s expertise extends to environmental TEM studies, particularly in observing real-time electrochemical reactions in lithium/sodium ion batteries and developing anti-corrosion techniques for magnesium alloys. He also specializes in advanced microscopy, nanomechanical testing, and fabrication using Focused Ion Beam (FIB) technology, contributing to improved corrosion resistance and battery efficiency.

Publication  Top Notes

  • Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe
    Science, 2020, 369 (6503), 542-545
    Citations: 220
    This work explores the mechanical properties of InSe, a van der Waals semiconductor, highlighting its exceptional plasticity, a critical factor for flexible electronics.
  • Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2
    Nature Communications, 2018, 9 (1), 4058
    Citations: 98
    The paper introduces a method to enhance the corrosion resistance of Mg alloys through a CO2-based treatment.
  • In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon
    NPG Asia Materials, 2016, 8 (7), e291-e291
    Citations: 81
    A detailed study using transmission electron microscopy (TEM) to observe how crystalline silicon transitions to an amorphous state under mechanical stress.
  • Chestnut-like SnO2/C nanocomposites with enhanced lithium-ion storage properties
    Nano Energy, 2016, 30, 885-891
    Citations: 66
    This research investigates nanocomposites for improving lithium-ion battery performance.
  • Tension–compression asymmetry in amorphous silicon
    Nature Materials, 2021, 20 (10), 1371-1377
    Citations: 52
    The work explores the mechanical behavior of amorphous silicon, especially the asymmetry between tension and compression.
  • High-throughput screening of 2D van der Waals crystals with plastic deformability
    Nature Communications, 2022, 13 (1), 7491
    Citations: 45
    This paper focuses on the search for two-dimensional van der Waals materials with superior plasticity for next-generation flexible electronics.
  • Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam
    Applied Physics Letters, 2015, 106 (8)
    Citations: 36
    The study analyzes the impact of thermal treatment on the mechanical properties of silicon structures at the submicron scale.
  • Ceramic nanowelding
    Nature Communications, 2018, 9 (1), 96
    Citations: 34
    This paper discusses the novel concept of ceramic nanowelding, which could have implications for nanomanufacturing and electronics.
  • In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
    RSC Advances, 2016, 6 (14), 11441-11445
    Citations: 26
    In this work, the authors investigate the sodiation process in copper oxide nanowires, which is relevant for battery technology.
  • In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction
    RSC Advances, 2016, 6 (98), 96035-96038
    Citations: 21
    This research reveals how MoS2 structures change during sodium ion insertion, providing insights for energy storage applications.

Conclusion

The candidate’s expertise in nanomechanics, in-situ TEM, and nanomaterial testing positions them as a leader in their field, making them a worthy candidate for the Best Researcher Award. Their ability to innovate and apply cutting-edge techniques in materials science, combined with their teaching prowess, sets them apart. Expanding their international collaborations and research impact would further elevate their profile for such prestigious recognition.

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz, Giresun Üniversity, Turkey

I am an experienced academic professional with a PhD in Mathematics from Quaid-i-Azam University, Islamabad. My academic journey also includes an M.Phil. in Applied Mathematics, an M.Sc. in Mathematics, and a B.Sc. from the same institution. I hold a B.Ed from Allama Iqbal Open University. I have served as a faculty member at Air University and a visiting faculty at Bahria University, with additional teaching experience at Islamabad College of Management & Commerce and Spring Field Public School. I have attended multiple international conferences on fluid mechanics, reflecting my active engagement in continuous professional development.

Professional Profiles:

Scopus

Professional Qualification 📜

B.Ed: Allama Iqbal Open University, Islamabad (2015).

Experience 💼

Serving as a Faculty in Air University, IslamabadServing as a Visiting Faculty in Bahria UniversityServed as a permanent faculty (Teaching experience at F.Sc and B.Sc level) in Islamabad College of Management & Commerce, RawalpindiWorked as a lecturer in the Spring Field Public School and College, Harley-2 Campus, Harley Street, Rawalpindi

Conferences Attended 📚

Attended 7th International Conference on “Recent Developments in Fluid Mechanics” February 13-15, 2018.Attended 9th International Conference on “Recent Developments in Fluid Mechanics” November 27-29, 2023.Attended Conference on “Emerging Issues”

Career Objective 🌟

To work with an organization that enhances my abilities and where I can use my academic and technical experience to grow with the organization.

✍️Publications Top Note :

1. Significance of Nonlinear Radiation in Entropy Generated Flow of Ternary-Hybrid Nanofluids with Variable Thermal Conductivity and Viscous Dissipation

Authors: Naz, S., Hayat, T., Adil Sadiq, M., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 15(7), 102792
Citations: 1
Abstract: Not available
Related Documents: Not available

This article explores the impact of nonlinear radiation on the entropy generated in flows of ternary-hybrid nanofluids, considering the effects of variable thermal conductivity and viscous dissipation. The study is crucial for enhancing the efficiency of thermal systems involving nanofluids.

2. Melting and Dissipative Effects About Entropy Induced Darcy-Forchheimer Flow Involving Ternary-Hybrid Nanofluids

Authors: Hayat, T., Naz, S., Alsaedi, A., Momani, S.
Journal: Case Studies in Thermal Engineering, 2024, 55, 104097
Citations: 3
Abstract: Not available
Related Documents: Not available

This research investigates the melting and dissipative effects in entropy-induced Darcy-Forchheimer flow with ternary-hybrid nanofluids. The findings provide insights into optimizing heat transfer processes in engineering applications.

3. Entropy Optimized Radiative Flow Conveying Hybrid Nanomaterials (MgO-MoS2/C2H6O2) with Melting Heat Characteristics and Cattaneo-Christov Theory: OHAM Analysis

Authors: Naz, S., Hayat, T., Ahmad, B., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 102892
Citations: 0
Abstract: Not available
Related Documents: Not available

This article discusses the entropy optimization in radiative flow of hybrid nanomaterials, incorporating MgO-MoS2/C2H6O2, considering melting heat characteristics and applying the Cattaneo-Christov theory. The analysis is performed using the Optimal Homotopy Asymptotic Method (OHAM).

4. Soret and Dufour Impacts in Entropy Optimized MHD Flow by Third-Grade Liquid Involving Variable Thermal Characteristics

Authors: Hayat, T., Naz, S., Momani, S.
Journal: Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0
Abstract: Not available
Related Documents: Not available

This study focuses on the Soret and Dufour effects in magnetohydrodynamic (MHD) flow of a third-grade liquid, optimized for entropy, considering variable thermal characteristics. The results have implications for advanced fluid dynamics and thermal management systems.

5. Numerical Modeling and Analysis of Non-Newtonian Nanofluid Featuring Activation Energy

Authors: Naz, S., Gulzar, M.M., Waqas, M., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2020, 10(8), pp. 3183–3192
Citations: 6
Abstract: Not available
Related Documents: Not available

This paper presents a numerical analysis of non-Newtonian nanofluids with activation energy. The study offers valuable data for designing and improving heat transfer systems utilizing nanofluids.

6. Hydromagnetic Carreau Nanoliquid in Frames of Dissipation and Activation Energy

Authors: Waqas, M., Naz, S., Hayat, T., Ijaz Khan, M., Alsaedi, A.
Journal: Communications in Theoretical Physics, 2019, 71(12), pp. 1416–1424
Citations: 12
Abstract: Not available
Related Documents: Not available

This article examines the behavior of hydromagnetic Carreau nanoliquids, incorporating dissipation and activation energy effects. The findings contribute to the field of fluid mechanics and thermal conductivity enhancement.

7. Numerical Simulation for Activation Energy Impact in Darcy–Forchheimer Nanofluid Flow by Impermeable Cylinder with Thermal Radiation

Authors: Waqas, M., Naz, S., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2019, 9(5), pp. 1173–1182
Citations: 20
Abstract: Not available
Related Documents: Not available

This study uses numerical simulation to analyze the impact of activation energy on Darcy-Forchheimer nanofluid flow around an impermeable cylinder, considering thermal radiation. The research offers insights into the heat transfer characteristics of nanofluids in complex geometries.

8. Effectiveness of Improved Fourier-Fick Laws in a Stratified Non-Newtonian Fluid with Variable Fluid Characteristics

Authors: Waqas, M., Naz, S., Hayat, T., Shehzad, S.A., Alsaedi, A.
Journal: International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29(6), pp. 2128–2145
Citations: 14
Abstract: Not available
Related Documents: Not available

This paper assesses the effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable characteristics. The research contributes to the understanding of heat and mass transfer in complex fluid systems.

9. Effectiveness of Darcy-Forchheimer and Nonlinear Mixed Convection Aspects in Stratified Maxwell Nanomaterial Flow Induced by Convectively Heated Surface

Authors: Hayat, T., Naz, S., Waqas, M., Alsaedi, A.
Journal: Applied Mathematics and Mechanics (English Edition), 2018, 39(10), pp. 1373–1384
Citations: 24
Abstract: Not available
Related Documents: Not available