Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Assoc Prof Dr. Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Yue Wang is an accomplished Assistant Professor at Xi’an Jiaotong University’s School of Material Science and Engineering. With a deep focus on nanomechanics and electrochemical reactions, his research has contributed significantly to materials science, particularly in magnesium alloys and battery technologies. Wang completed his Ph.D. in 2018, building on extensive hands-on experience with TEM and other nanotechnology techniques. He is a recipient of numerous prestigious awards and has several high-impact publications in journals like Nature Communications and Science. His work pushes the boundaries of materials science, enabling innovations in corrosion resistance and energy storage. 🧪📚🔬

 

Publication Profile

Education🎓📖🌍

Yue Wang holds a Ph.D. in Materials Science and Engineering from Xi’an Jiaotong University, where he started his studies in 2013. He completed a Bachelor’s in the same field from Northwestern Polytechnical University in 2013. He was also a visiting student at Lawrence Berkeley National Lab, University of California, Berkeley, from February 2017 to February 2018. During this period, he gained valuable exposure to cutting-edge research environments, broadening his knowledge of nanomaterials and real-time electrochemical reactions. His academic journey showcases a strong foundation in both theoretical and applied materials science.

Experience🏫🧑‍🏫🛠️

Yue Wang has been with Xi’an Jiaotong University’s School of Material Science and Engineering since 2018, where he now serves as a tenured Assistant Professor. Prior to his tenure, he worked extensively in in-situ environmental TEM and nanomechanical testing, producing significant contributions to battery technologies and corrosion resistance. His research focuses on Si-based materials, Mg alloys, and novel microscopy techniques. He also served as a Teaching Assistant at the university, where he taught the course on mechanical properties of materials. His career reflects a strong emphasis on research and education in materials science.

Awards and Honors🏆

Yue Wang has received several prestigious awards throughout his career. He was recognized for his high-impact contributions in materials science, including publishing in leading journals such as Science and Nature Communications. His innovative research in the field of nanomechanics and corrosion resistance has earned him multiple research grants and distinctions within academic circles. He has also been an invited speaker at several international conferences, where his work on Si-based materials and Mg alloys has been widely lauded. His dedication to pushing the boundaries of materials research continues to earn him accolades. 🥇🎖️

Research Focus 🔬🧲📐

Yue Wang’s research is primarily centered on the mechanical properties and nanostructures of Si-based materials and metals. His work utilizes in-situ quantitative nanomechanics to probe these materials at the micro and nano levels. Wang’s expertise extends to environmental TEM studies, particularly in observing real-time electrochemical reactions in lithium/sodium ion batteries and developing anti-corrosion techniques for magnesium alloys. He also specializes in advanced microscopy, nanomechanical testing, and fabrication using Focused Ion Beam (FIB) technology, contributing to improved corrosion resistance and battery efficiency.

Publication  Top Notes

  • Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe
    Science, 2020, 369 (6503), 542-545
    Citations: 220
    This work explores the mechanical properties of InSe, a van der Waals semiconductor, highlighting its exceptional plasticity, a critical factor for flexible electronics.
  • Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2
    Nature Communications, 2018, 9 (1), 4058
    Citations: 98
    The paper introduces a method to enhance the corrosion resistance of Mg alloys through a CO2-based treatment.
  • In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon
    NPG Asia Materials, 2016, 8 (7), e291-e291
    Citations: 81
    A detailed study using transmission electron microscopy (TEM) to observe how crystalline silicon transitions to an amorphous state under mechanical stress.
  • Chestnut-like SnO2/C nanocomposites with enhanced lithium-ion storage properties
    Nano Energy, 2016, 30, 885-891
    Citations: 66
    This research investigates nanocomposites for improving lithium-ion battery performance.
  • Tension–compression asymmetry in amorphous silicon
    Nature Materials, 2021, 20 (10), 1371-1377
    Citations: 52
    The work explores the mechanical behavior of amorphous silicon, especially the asymmetry between tension and compression.
  • High-throughput screening of 2D van der Waals crystals with plastic deformability
    Nature Communications, 2022, 13 (1), 7491
    Citations: 45
    This paper focuses on the search for two-dimensional van der Waals materials with superior plasticity for next-generation flexible electronics.
  • Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam
    Applied Physics Letters, 2015, 106 (8)
    Citations: 36
    The study analyzes the impact of thermal treatment on the mechanical properties of silicon structures at the submicron scale.
  • Ceramic nanowelding
    Nature Communications, 2018, 9 (1), 96
    Citations: 34
    This paper discusses the novel concept of ceramic nanowelding, which could have implications for nanomanufacturing and electronics.
  • In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
    RSC Advances, 2016, 6 (14), 11441-11445
    Citations: 26
    In this work, the authors investigate the sodiation process in copper oxide nanowires, which is relevant for battery technology.
  • In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction
    RSC Advances, 2016, 6 (98), 96035-96038
    Citations: 21
    This research reveals how MoS2 structures change during sodium ion insertion, providing insights for energy storage applications.

Conclusion

The candidate’s expertise in nanomechanics, in-situ TEM, and nanomaterial testing positions them as a leader in their field, making them a worthy candidate for the Best Researcher Award. Their ability to innovate and apply cutting-edge techniques in materials science, combined with their teaching prowess, sets them apart. Expanding their international collaborations and research impact would further elevate their profile for such prestigious recognition.

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz, Giresun Üniversity, Turkey

I am an experienced academic professional with a PhD in Mathematics from Quaid-i-Azam University, Islamabad. My academic journey also includes an M.Phil. in Applied Mathematics, an M.Sc. in Mathematics, and a B.Sc. from the same institution. I hold a B.Ed from Allama Iqbal Open University. I have served as a faculty member at Air University and a visiting faculty at Bahria University, with additional teaching experience at Islamabad College of Management & Commerce and Spring Field Public School. I have attended multiple international conferences on fluid mechanics, reflecting my active engagement in continuous professional development.

Professional Profiles:

Scopus

Professional Qualification 📜

B.Ed: Allama Iqbal Open University, Islamabad (2015).

Experience 💼

Serving as a Faculty in Air University, IslamabadServing as a Visiting Faculty in Bahria UniversityServed as a permanent faculty (Teaching experience at F.Sc and B.Sc level) in Islamabad College of Management & Commerce, RawalpindiWorked as a lecturer in the Spring Field Public School and College, Harley-2 Campus, Harley Street, Rawalpindi

Conferences Attended 📚

Attended 7th International Conference on “Recent Developments in Fluid Mechanics” February 13-15, 2018.Attended 9th International Conference on “Recent Developments in Fluid Mechanics” November 27-29, 2023.Attended Conference on “Emerging Issues”

Career Objective 🌟

To work with an organization that enhances my abilities and where I can use my academic and technical experience to grow with the organization.

✍️Publications Top Note :

1. Significance of Nonlinear Radiation in Entropy Generated Flow of Ternary-Hybrid Nanofluids with Variable Thermal Conductivity and Viscous Dissipation

Authors: Naz, S., Hayat, T., Adil Sadiq, M., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 15(7), 102792
Citations: 1
Abstract: Not available
Related Documents: Not available

This article explores the impact of nonlinear radiation on the entropy generated in flows of ternary-hybrid nanofluids, considering the effects of variable thermal conductivity and viscous dissipation. The study is crucial for enhancing the efficiency of thermal systems involving nanofluids.

2. Melting and Dissipative Effects About Entropy Induced Darcy-Forchheimer Flow Involving Ternary-Hybrid Nanofluids

Authors: Hayat, T., Naz, S., Alsaedi, A., Momani, S.
Journal: Case Studies in Thermal Engineering, 2024, 55, 104097
Citations: 3
Abstract: Not available
Related Documents: Not available

This research investigates the melting and dissipative effects in entropy-induced Darcy-Forchheimer flow with ternary-hybrid nanofluids. The findings provide insights into optimizing heat transfer processes in engineering applications.

3. Entropy Optimized Radiative Flow Conveying Hybrid Nanomaterials (MgO-MoS2/C2H6O2) with Melting Heat Characteristics and Cattaneo-Christov Theory: OHAM Analysis

Authors: Naz, S., Hayat, T., Ahmad, B., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 102892
Citations: 0
Abstract: Not available
Related Documents: Not available

This article discusses the entropy optimization in radiative flow of hybrid nanomaterials, incorporating MgO-MoS2/C2H6O2, considering melting heat characteristics and applying the Cattaneo-Christov theory. The analysis is performed using the Optimal Homotopy Asymptotic Method (OHAM).

4. Soret and Dufour Impacts in Entropy Optimized MHD Flow by Third-Grade Liquid Involving Variable Thermal Characteristics

Authors: Hayat, T., Naz, S., Momani, S.
Journal: Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0
Abstract: Not available
Related Documents: Not available

This study focuses on the Soret and Dufour effects in magnetohydrodynamic (MHD) flow of a third-grade liquid, optimized for entropy, considering variable thermal characteristics. The results have implications for advanced fluid dynamics and thermal management systems.

5. Numerical Modeling and Analysis of Non-Newtonian Nanofluid Featuring Activation Energy

Authors: Naz, S., Gulzar, M.M., Waqas, M., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2020, 10(8), pp. 3183–3192
Citations: 6
Abstract: Not available
Related Documents: Not available

This paper presents a numerical analysis of non-Newtonian nanofluids with activation energy. The study offers valuable data for designing and improving heat transfer systems utilizing nanofluids.

6. Hydromagnetic Carreau Nanoliquid in Frames of Dissipation and Activation Energy

Authors: Waqas, M., Naz, S., Hayat, T., Ijaz Khan, M., Alsaedi, A.
Journal: Communications in Theoretical Physics, 2019, 71(12), pp. 1416–1424
Citations: 12
Abstract: Not available
Related Documents: Not available

This article examines the behavior of hydromagnetic Carreau nanoliquids, incorporating dissipation and activation energy effects. The findings contribute to the field of fluid mechanics and thermal conductivity enhancement.

7. Numerical Simulation for Activation Energy Impact in Darcy–Forchheimer Nanofluid Flow by Impermeable Cylinder with Thermal Radiation

Authors: Waqas, M., Naz, S., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2019, 9(5), pp. 1173–1182
Citations: 20
Abstract: Not available
Related Documents: Not available

This study uses numerical simulation to analyze the impact of activation energy on Darcy-Forchheimer nanofluid flow around an impermeable cylinder, considering thermal radiation. The research offers insights into the heat transfer characteristics of nanofluids in complex geometries.

8. Effectiveness of Improved Fourier-Fick Laws in a Stratified Non-Newtonian Fluid with Variable Fluid Characteristics

Authors: Waqas, M., Naz, S., Hayat, T., Shehzad, S.A., Alsaedi, A.
Journal: International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29(6), pp. 2128–2145
Citations: 14
Abstract: Not available
Related Documents: Not available

This paper assesses the effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable characteristics. The research contributes to the understanding of heat and mass transfer in complex fluid systems.

9. Effectiveness of Darcy-Forchheimer and Nonlinear Mixed Convection Aspects in Stratified Maxwell Nanomaterial Flow Induced by Convectively Heated Surface

Authors: Hayat, T., Naz, S., Waqas, M., Alsaedi, A.
Journal: Applied Mathematics and Mechanics (English Edition), 2018, 39(10), pp. 1373–1384
Citations: 24
Abstract: Not available
Related Documents: Not available