Imran Shah | Maeterials | Best Researcher Award

Dr. Imran Shah | Maeterials | Best Researcher Award

Assistant Professor at Air University Islamabad Pakistan, Pakistan

Dr. Imran Shah, an Assistant Professor in Aerospace Engineering at CAE, NUST, specializes in Mechanical and Mechatronics Engineering. With a strong passion for innovation, he brings hands-on expertise in teaching, research, and industrial consultancy. Having worked across various academic and research institutes, he plays a pivotal role in mentoring students and engaging in interdisciplinary collaborations. 🌟📚

Publication Profile

scholar

Education🔬

Dr. Imran Shah holds a Ph.D. in Mechatronics Engineering from Jeju National University (South Korea) with an outstanding 4.20/4.30 CGPA. He also earned his MS in Mechanical Engineering from the National University of Science and Technology (Pakistan) with a CGPA of 3.45/4.00, and a BS in Mechanical Engineering from the International Islamic University (Pakistan) with an impressive 3.88/4.00 CGPA. 🎓

Experience🔧

Dr. Imran Shah has accumulated substantial teaching and research experience as an Assistant Professor at various institutions like NUST, NUTECH, and the University of Lahore. He also served as a Lab Engineer at IIUI and held roles in industrial advisory boards. His contributions to laboratory management and industrial consultancy demonstrate his versatility in academia and industry. 🏫

Awards & Honors

Dr. Imran Shah has been recognized with a Gold Medal and Distinction Certificate for his excellence in BS Mechanical Engineering. His notable awards include the Best Research Paper Award at the International Conference on Science, Engineering & Technology (ICSET) in Kuala Lumpur, Malaysia.

Research Focus🔬

Dr. Imran Shah’s research focuses on optimizing mixing performance in active and passive micromixers for lab-on-a-chip devices and numerical investigations of surface acoustic waves interacting with droplets for point-of-care devices. His expertise spans finite element analysis, numerical modeling, and microfluidics.

Publications 📖

3D Printing for Soft Robotics – A comprehensive review published in Science and Technology of Advanced Materials (2018), discussing the potential of 3D printing in soft robotics for advanced applications such as medical devices and autonomous systems.

Experimental and Numerical Analysis of Y-shaped Split and Recombination Micro-Mixers – Published in the Chemical Engineering Journal (2019), this paper explores the optimization of mixing units to enhance fluid dynamics in microfluidic devices.

Quantitative Detection of Uric Acid via ZnO Quantum Dots-Based Electrochemical Biosensor – Featured in Sensors and Actuators A: Physical (2018), this article delves into highly sensitive detection systems for biochemical sensing applications.

Wearable Healthcare Monitoring via Electrochemical Integrated Devices for Glucose Sensing – A study published in Sensors (2022), highlighting innovative methods for glucose monitoring using microfluidic systems.

Optimizing Mixing in Micromixers for Lab-on-a-Chip Devices – This paper, published in Proceedings of the Institution of Mechanical Engineers (2019), focuses on enhancing mixing performance using finite element analysis and Taguchi methods for optimal design.

Conclusion

The candidate shows exceptional promise for the Best Researcher Award, with a combination of stellar academic achievements, strong teaching experience, and noteworthy research contributions. Their dedication to advancing Mechatronics and Mechanical Engineering, combined with a growing international profile, makes them a strong contender for this prestigious award. By focusing on enhancing their research funding, broadening collaborative efforts, and amplifying public engagement, the candidate could elevate their impact and further solidify their standing in the field.

V Sankar | Nanomaterials | Best Researcher Award

Dr. V Sankar | Nanomaterials | Best Researcher Award

Vice principal and professor at PSG College of Pharmacy, India

🎓 A distinguished professor with over two decades of experience in pharmaceutical education, research, and innovation. Currently serving as Professor and Head at PSG College of Pharmacy, this individual is dedicated to nurturing young minds and advancing pharmaceutical sciences through impactful teaching and cutting-edge research. 🧪 Their leadership and contributions to pharmaceutics have shaped academic excellence and professional development.

Publication Profile

Education1️⃣ 

B Pharm (Pharmacy): The Tamilnadu Dr. MGR Medical University, 1996. M Pharm (Pharmaceutics): The Tamilnadu Dr. MGR Medical University, 1998. PhD (Pharmaceutics): Bharathidasan University, 2010.

Experience📘

Lecturer (1998–2002): Fathima College of Pharmacy. Assistant Professor (2002–2009): PSG College of Pharmacy. Professor and Head (2009–Present): PSG College of Pharmacy, excelling in leadership, teaching, and innovation in pharmaceutics.

Awards and Honors🏆

Best Pharmacy Teacher Award: Recognized for exceptional contributions to pharmaceutical education. AICTE Sponsorships: Participated in numerous quality improvement and refresher programs. Leadership Excellence: Guided numerous students toward academic and research success.

Research Focus🔬

Advancing pharmaceutical technology through innovations in cosmeceuticals, bioavailability studies, and drug formulation.  Specializes in pharmaceutical biotechnology, focusing on genetic engineering and cell culture applications.  Committed to ethical research practices and training in clinical investigations.

Publications 📖

Formulation and Optimization of Zidovudine Niosomes

Authors: K. Ruckmani, V. Sankar

Journal: AAPS PharmSciTech (2010)

Citations: 354

Summary: This paper focuses on the formulation and optimization of Zidovudine-loaded niosomes, contributing to the development of effective drug delivery systems for HIV treatment.

Design and Evaluation of Nifedipine Transdermal Patches

Authors: V. Sankar, DB Johnson, V. Sivanand, et al.

Journal: Indian Journal of Pharmaceutical Sciences (2003)

Citations: 117

Summary: This study presents the design and evaluation of nifedipine-loaded transdermal patches, offering a novel approach for controlled drug release in hypertension treatment.

Proniosomes as Drug Carriers

Authors: V. Sankar, K. Ruckmani, S. Durga, S. Jailani

Journal: Pakistan Journal of Pharmaceutical Sciences (2010)

Citations: 97

Summary: Explores the application of proniosomes as drug carriers for the delivery of poorly soluble drugs, enhancing bioavailability.

Synergistic and Enhanced Anticancer Effect of Silver Nanoparticles Conjugated with Gemcitabine

Authors: A. Karuppaiah, K. Siram, D. Selvaraj, M. Ramasamy, et al.

Journal: Materials Today Communications (2020)

Citations: 44

Summary: Investigates the anticancer efficacy of silver nanoparticles conjugated with gemcitabine, demonstrating a synergistic effect in metastatic breast cancer cells.

Development and Evaluation of Finasteride-Loaded Ethosomes for Targeting the Pilosebaceous Unit

Authors: V. Wilson, K. Siram, S. Rajendran, V. Sankar

Journal: Artificial Cells, Nanomedicine, and Biotechnology (2018)

Citations: 34

Summary: Focuses on finasteride-loaded ethosomes, aimed at targeted delivery to treat androgenic alopecia.

Formulation and Evaluation of Cetirizine Dihydrochloride Orodispersible Tablets

Authors: S. Subramanian, V. Sankar, AA Manakadan, S. Ismail, G. Andhuvan

Journal: Pakistan Journal of Pharmaceutical Sciences (2010)

Citations: 31

Summary: Develops orodispersible tablets of cetirizine, enhancing patient compliance and providing fast relief from allergic rhinitis.

Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles for Targeted Delivery

Authors: A. Karuppaiah, R. Rajan, S. Hariharan, D.K. Balasubramaniam, et al.

Journal: Current Pharmaceutical Design (2020)

Citations: 22

Summary: Discusses the synthesis of folic acid-conjugated gemcitabine tethered to silver nanoparticles for targeted cancer therapy.

Anti-Diabetic Effect of Achyranthes Rubrofusca Leaf Extracts on Alloxan-Induced Diabetic Rats

Authors: G. Geetha, GP Kalavalarasariel, V. Sankar

Journal: Pakistan Journal of Pharmaceutical Sciences (2011)

Citations: 56

Conclusion

The individual demonstrates strong academic qualifications, years of teaching experience, and a commitment to professional development through various courses and workshops. However, to strengthen their case for the Best Researcher Award, they should focus on publishing high-impact research, engaging in international collaborations, and exploring innovative research areas within pharmaceutics. With these improvements, they could further cement their position as a leading figure in pharmaceutical sciences and be a strong contender for this award.

Dandan Cui | 2D materails | Best Researcher Award

Ms.Dandan Cui | 2D materails | Best Researcher Award

Assistant research fellow at  Beihang University, China

🌟 Name: Dr. Dandan Cui 🎓 Title: Ph.D. in Physics 🏫 Current Position: Assistant Professor, Beihang University (2020–Present) 📚 Expertise: Two-dimensional materials, surface physicochemistry, and photocatalytic materials. 📖 Publications: Author of highly cited works in journals such as Journal of Materials Chemistry A and ACS Sustainable Chemistry & Engineering. 💡 Contribution: Pioneered advancements in photocatalytic materials, vacancy engineering, and photoelectrocatalysis.

Professional Profiles:

Education🎓

Ph.D. in Physics: Focused on surface physicochemistry and advanced materials research. 📖 Master’s Degree: Specialization in material engineering with research on photocatalysts. 🏫 Undergraduate Degree: Studied Physics with high distinction, fostering a strong foundation in theoretical and experimental science. 📘 Achievements: Graduated with honors and consistently recognized for academic excellence throughout studies.

Experience 🏫

2020–Present: Assistant Professor at Beihang University, advancing research in photocatalytic materials. 🔬 Collaborative Research: Published groundbreaking studies on BiOCl and BiVO4, influencing the field of material science. 📘 Leadership Roles: Mentored graduate students and coordinated multi-disciplinary research projects. 🌐 Outreach: Active participation in international conferences and workshops on advanced materials.

Awards and Honors 🏅

Highly Cited Paper Award: For influential research in Journal of Materials Chemistry A. 🎖️ Young Researcher Award: Recognized for contributions to photocatalysis and material design. 🏆 Research Excellence Award: Honored by Beihang University for innovative achievements. 📜 Invited Reviewer: Prestigious journals in materials science and chemistry.

Research Focus 🧪

Photocatalytic Materials: Design and development of novel semiconductors for energy applications. 🌀 Two-Dimensional Materials: Exploration of physicochemical properties for enhanced functionality. 💡 Vacancy Engineering: Leveraging defects for improved photocatalytic and photoelectrochemical properties. 🔬 Surface Wettability: Investigating its role in photoelectrocatalytic oxygen evolution. 🌍 Sustainability: Advancing green energy technologies through material innovation.

✍️Publications Top Note :

Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation
📝 Authors: Shi, Y.; Luo, B.; Sang, R.; Beller, M.; Li, X.
📚 Journal: Nature Communications, 2024, 15(1), 8189.
Focus: Combines nanoparticles with single-metal sites for formic acid dehydrogenation, enhancing catalytic performance.

Emerging Amorphized Metastable Structures to Break Limitations of 2D Materials for More Promising Electrocatalysis
📝 Authors: Gao, Y.; Liang, H.; Xu, H.; Huang, W.; Lin, L.
📚 Journal: ACS Energy Letters, 2024, 9(8), 3982–4002.
Focus: Reviews metastable 2D materials for improved electrocatalysis.

Emerging Advances of Liquid Metal toward Flexible Sensors
📝 Authors: Qin, J.; Cui, D.; Ren, L.; Shi, Y.; Du, Y.
📚 Journal: Advanced Materials Technologies, 2024, 9(14), 2300431.
Focus: Discusses liquid metal applications in flexible sensors.

Cobalt-Doped Aluminum Aerogels as Photocatalyst Fabricated by a Liquid Metal Reaction Method
📝 Authors: Xu, Q.; Lv, Z.; Zhu, Y.; Hao, W.; Du, Y.
📚 Journal: Journal of Chemical Education, 2024, 101(7), 2850–2856.
Focus: Explores cobalt-doped aerogels for photocatalysis.

Synchronous Pressure-Induced Enhancement in the Photoresponsivity and Response Speed of BiOBr
📝 Authors: Yue, L.; Cui, D.; Tian, F.; Du, Y.; Liu, B.
📚 Journal: Acta Materialia, 2024, 263, 119529.
Focus: Demonstrates enhanced photocatalytic properties of BiOBr under pressure.

Synergistic Surface Engineering of BiVO4 Photoanodes for Improved Photoelectrochemical Water Oxidation
📝 Authors: Wang, S.; Shi, Z.; Du, K.; Du, Y.; Hao, W.
📚 Journal: Small Methods, 2024.
Focus: Investigates BiVO4 photoanodes for water oxidation.

Constructing 2D Bismuth-Based Heterostructure for Highly Efficient Photocatalytic CO2 Reduction
📝 Authors: Xu, R.-H.; Jiang, H.-Y.; Cui, D.-D.; Hao, W.-C.; Du, Y.
📚 Journal: Tungsten, 2024.
Focus: Designs bismuth-based heterostructures for CO2 reduction.

Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid
📝 Authors: Shi, Y.; Luo, B.; Liu, R.; Beller, M.; Li, X.
📚 Journal: Angewandte Chemie – International Edition, 2023, 62(43), e202313099.
Focus: Enhances hydrogen generation using dual-metal catalysts.

Bismuth-Based Semiconductor Heterostructures for Photocatalytic Pollution Gases Removal
📝 Authors: Wang, Y.; Du, K.; Xu, R.; Hao, W.; Du, Y.
📚 Journal: Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100824.
Focus: Reviews bismuth-based materials for gas pollution removal.

Operando Reconstruction-Induced CO2 Reduction Activity and Selectivity for Cobalt-Based Photocatalysis
📝 Authors: Zhao, K.; Pang, W.; Jiang, S.; Fu, D.; Zhao, H.
📚 Journal: Nano Research, 2023, 16(4), 4812–4820.
Focus: Studies cobalt-based photocatalysis for CO2 reduction.

Conclusion

Dr. Dandan Cui is a highly suitable candidate for the Best Researcher Award, given her outstanding contributions to two-dimensional materials and photocatalytic material science. Her impactful publications, innovative research, and leadership in collaborative projects make her a strong contender. To further enhance her candidacy, she could expand her recognition, secure research funding, and increase her interdisciplinary and societal contributions. With her trajectory, she is poised to make even more significant advances in her field and inspire future researchers.

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz, Giresun Üniversity, Turkey

I am an experienced academic professional with a PhD in Mathematics from Quaid-i-Azam University, Islamabad. My academic journey also includes an M.Phil. in Applied Mathematics, an M.Sc. in Mathematics, and a B.Sc. from the same institution. I hold a B.Ed from Allama Iqbal Open University. I have served as a faculty member at Air University and a visiting faculty at Bahria University, with additional teaching experience at Islamabad College of Management & Commerce and Spring Field Public School. I have attended multiple international conferences on fluid mechanics, reflecting my active engagement in continuous professional development.

Professional Profiles:

Scopus

Professional Qualification 📜

B.Ed: Allama Iqbal Open University, Islamabad (2015).

Experience 💼

Serving as a Faculty in Air University, IslamabadServing as a Visiting Faculty in Bahria UniversityServed as a permanent faculty (Teaching experience at F.Sc and B.Sc level) in Islamabad College of Management & Commerce, RawalpindiWorked as a lecturer in the Spring Field Public School and College, Harley-2 Campus, Harley Street, Rawalpindi

Conferences Attended 📚

Attended 7th International Conference on “Recent Developments in Fluid Mechanics” February 13-15, 2018.Attended 9th International Conference on “Recent Developments in Fluid Mechanics” November 27-29, 2023.Attended Conference on “Emerging Issues”

Career Objective 🌟

To work with an organization that enhances my abilities and where I can use my academic and technical experience to grow with the organization.

✍️Publications Top Note :

1. Significance of Nonlinear Radiation in Entropy Generated Flow of Ternary-Hybrid Nanofluids with Variable Thermal Conductivity and Viscous Dissipation

Authors: Naz, S., Hayat, T., Adil Sadiq, M., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 15(7), 102792
Citations: 1
Abstract: Not available
Related Documents: Not available

This article explores the impact of nonlinear radiation on the entropy generated in flows of ternary-hybrid nanofluids, considering the effects of variable thermal conductivity and viscous dissipation. The study is crucial for enhancing the efficiency of thermal systems involving nanofluids.

2. Melting and Dissipative Effects About Entropy Induced Darcy-Forchheimer Flow Involving Ternary-Hybrid Nanofluids

Authors: Hayat, T., Naz, S., Alsaedi, A., Momani, S.
Journal: Case Studies in Thermal Engineering, 2024, 55, 104097
Citations: 3
Abstract: Not available
Related Documents: Not available

This research investigates the melting and dissipative effects in entropy-induced Darcy-Forchheimer flow with ternary-hybrid nanofluids. The findings provide insights into optimizing heat transfer processes in engineering applications.

3. Entropy Optimized Radiative Flow Conveying Hybrid Nanomaterials (MgO-MoS2/C2H6O2) with Melting Heat Characteristics and Cattaneo-Christov Theory: OHAM Analysis

Authors: Naz, S., Hayat, T., Ahmad, B., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 102892
Citations: 0
Abstract: Not available
Related Documents: Not available

This article discusses the entropy optimization in radiative flow of hybrid nanomaterials, incorporating MgO-MoS2/C2H6O2, considering melting heat characteristics and applying the Cattaneo-Christov theory. The analysis is performed using the Optimal Homotopy Asymptotic Method (OHAM).

4. Soret and Dufour Impacts in Entropy Optimized MHD Flow by Third-Grade Liquid Involving Variable Thermal Characteristics

Authors: Hayat, T., Naz, S., Momani, S.
Journal: Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0
Abstract: Not available
Related Documents: Not available

This study focuses on the Soret and Dufour effects in magnetohydrodynamic (MHD) flow of a third-grade liquid, optimized for entropy, considering variable thermal characteristics. The results have implications for advanced fluid dynamics and thermal management systems.

5. Numerical Modeling and Analysis of Non-Newtonian Nanofluid Featuring Activation Energy

Authors: Naz, S., Gulzar, M.M., Waqas, M., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2020, 10(8), pp. 3183–3192
Citations: 6
Abstract: Not available
Related Documents: Not available

This paper presents a numerical analysis of non-Newtonian nanofluids with activation energy. The study offers valuable data for designing and improving heat transfer systems utilizing nanofluids.

6. Hydromagnetic Carreau Nanoliquid in Frames of Dissipation and Activation Energy

Authors: Waqas, M., Naz, S., Hayat, T., Ijaz Khan, M., Alsaedi, A.
Journal: Communications in Theoretical Physics, 2019, 71(12), pp. 1416–1424
Citations: 12
Abstract: Not available
Related Documents: Not available

This article examines the behavior of hydromagnetic Carreau nanoliquids, incorporating dissipation and activation energy effects. The findings contribute to the field of fluid mechanics and thermal conductivity enhancement.

7. Numerical Simulation for Activation Energy Impact in Darcy–Forchheimer Nanofluid Flow by Impermeable Cylinder with Thermal Radiation

Authors: Waqas, M., Naz, S., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2019, 9(5), pp. 1173–1182
Citations: 20
Abstract: Not available
Related Documents: Not available

This study uses numerical simulation to analyze the impact of activation energy on Darcy-Forchheimer nanofluid flow around an impermeable cylinder, considering thermal radiation. The research offers insights into the heat transfer characteristics of nanofluids in complex geometries.

8. Effectiveness of Improved Fourier-Fick Laws in a Stratified Non-Newtonian Fluid with Variable Fluid Characteristics

Authors: Waqas, M., Naz, S., Hayat, T., Shehzad, S.A., Alsaedi, A.
Journal: International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29(6), pp. 2128–2145
Citations: 14
Abstract: Not available
Related Documents: Not available

This paper assesses the effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable characteristics. The research contributes to the understanding of heat and mass transfer in complex fluid systems.

9. Effectiveness of Darcy-Forchheimer and Nonlinear Mixed Convection Aspects in Stratified Maxwell Nanomaterial Flow Induced by Convectively Heated Surface

Authors: Hayat, T., Naz, S., Waqas, M., Alsaedi, A.
Journal: Applied Mathematics and Mechanics (English Edition), 2018, 39(10), pp. 1373–1384
Citations: 24
Abstract: Not available
Related Documents: Not available

Prof Muhammad Qureshi | Bio-Nanotechnology

Prof  Muhammad  Qureshi: Leading Researcher in Bio-Nanotechnology.
 Prof  Muhammad  Qureshi Department of Biochemistry Deanship of Educational Services Qassim University, Buraydah.

Professor Muhammad Qureshi, affiliated with Qassim University, is a distinguished academic known for his contributions to higher education. With a wealth of expertise, Prof. Qureshi has played a pivotal role in shaping intellectual discourse at the university. His influence extends beyond the lecture halls, encompassing research and mentorship. As a dedicated educator, he fosters an environment of academic excellence, nurturing the intellectual growth of students. Prof. Qureshi’s commitment to advancing knowledge is evident in his scholarly pursuits and leadership at Qassim University, making him a respected figure in both academic and research circles.

 

Professional Profiles:

 

 

The impact of her research is evident in citation metrics and indices from google scholar:

Cited by : All-354

citations- 342

h-index-10

 

Education:

  • PhD, Advanced Technology Research Center for Applied Sciences and Advanced Technology, National Polytechnic Institute 01/2015-12/2018 Mexico City, Mexico -Thesis: “An XPS study of Prussian blue Analogues and Related Coordination Compounds”. Advisor. Scientist Emeritus Edilso F. Reguera Ruiz (edilso.reguera@gmail.com) and Dr. Luis Lartundo (SNI II) (llartundo@ipn.mx)Master’s degree, Advanced Technology Research Center for Applied Sciences and Advanced Technology, National Polytechnic Institute 01/2013-12/2014 Mexico City, Mexico -Thesis: “Study of an atypical transition metal nitroprussides”. Advisor. Scientist Emeritus Edilso F. Reguera Ruiz (edilso.reguera@gmail.com) and Dr. Adela Lemus (SNI II) (alemuss@ipn.mx)Bachelor’s’ degree, Industrial Chemical Engineering Escuela Superior en Ingeniería Química e Industrias Extractivas (ESIQIE), National Polytechnic Institute 08/2008-12/2012 Mexico City, Mexico -Degree obtained with the Master´s thesis: “Study of an atypical transition metal nitroprussides”. Advisor. Scientist Emeritus Edilso F. Reguera Ruiz (edilso.reguera@gmail.com) and Dr. Adela Lemus (SNI II) (alemuss@ipn.mx)

 

Synchrotron Project:

Accepted internal proposal for Beam time run September-October/2022 (1 month) Surface structure and chemical composition study of Nb for quantum materials applications: 3D and 2D resonators Author(s): A. Cano, D. Bafia, Z. Sung, M. Martinello, S. Posen, A. Romanenko, A. Grassellino and J. R. Zuazo European Synchrotron Radiation Facility, Spline Spanish beam-station, ESRF, France Contact: Beam-scientist PhD Juan R. Zuazo, Beam-scientist PhD German Castro Accepted proposal for Beam time run November/2021 (2 year)

Electronic and structural changes in Nb SRF material under cryogenic conditions through combined HAXPES/GIXRD data Author(s): A. Cano, Z. Sung, D. Bafia, T. Spina, M. Martinello, S. Posen, A. Grassellino, A. Romanenko European Synchrotron Radiation Facility, Spline Spanish beam-station, ESRF, France Contact: Beam-scientist PhD Juan R. Zuazo, Beam-scientist PhD German Castro Accepted proposal for Beam time run Feb/2021(1 year)

Tracing microstructural changes in SRF Nb-matrix under cooling/heating cycles through HighResolution XRD powder patterns analysis Author(s): A. Cano, D. Bafia, J. Lee, Z. Sung, M. Martinello, A. Romanenko Advanced Photon Source-Argonne National Laboratory, IL, USA Contact: Beam-scientist Jennia Karapetrova

 

Research Experience:

  • Postdoctoral Research Associate Fermi National Accelerator Laboratory 06/2019-Present Batavia, IL, USA Applied Physics and Superconducting Division (APS/TD) -Research Project: Surface structure and chemical composition of the near-surface of SRF cavities based on Nb and Nb3Sn Superconducting Quantum Materials and System Center (SQMS) -Research Project: Unraveling the local surface structure in 2D and 3D Nb superconducting resonators and examining its potential impact on TLS losses Supervisors: Senior Scientist Alexander Romanenko (aroman@fnal.gov), PhD Martina Martinello (martina9@stanford.edu), Senior Scientist Grigory Eremeev (grigory@fnal.gov) and PhD. Akshay Murthy (amurthy@fnal.gov) -Design of multi-technique surface analysis platform based on X-ray photoelectron spectrometer with HeL manipulator. Supervisors:Senior Researcher Anna Grasellino (annag@fnal.gov), Senior Scientist Alexander Romanenko (aroman@fnal.gov), PhD Mattia Checchin (checchin@stanford.edu) User facilities/Postdoctoral Research Associate European Synchrotron Radiation Facilities 11/2021-10/2022 Grenoble, France Spline Spanish Beamline -Research Project: Surface structure study of Nb for quantum materials applications: 3D and 2D resonators Supervisors: Senior Scientist Alexander Romanenko (aroman@fnal.gov), Beam-scientist PhD Juan R. Zuazo (rubio@esrf.fr), PhD Martina Martinello (martina9@stanford.edu), Senior Scientist Grigory Eremeev (grigory@fnal.gov) User facilities/Postdoctoral Research Associate Advanced Photon Source-Argonne National Laboratory 11/2020-11/2021 Lemont, IL, USA 33-BM-C -Research Project: Tracing microstructural changes in SRF Nb-matrix upon cooling/heating cycles by cryo-GI-XRD Supervisors: Senior Scientist Alexander Romanenko (aroman@fnal.gov), Beam-scientist M. Sc. Evguenia Karapetrova (jenia@anl.gov), PhD Martina Martinello (martina9@stanford.edu), PhD Tiziana Spina (spina.tiziana@as-g.it) User facilities/ Postdoctoral Research Associate Northwestern University 07/2019-Present Evanston, IL, USA NU Atomic and Nanoscale Characterization Experimental Center (NUANCE) -Research Project: Chemical composition mapping of the inner surface of SRF cavities cutouts using Electron Spectroscopies and Microscopy Supervisors:Senior Researcher Anna Grasellino (annag@fnal.gov), PhD Martina Martinello (martina9@stanford.edu) and PhD Xinqi Chen (xchen@northwestern.edu) Integrated Molecular Structure Education and Research Center (IMSERC) -Research Project: Evaluation of the Surface structure of Nb cavities cutouts processed with state-of-the-art RF surface treatments using X-ray diffraction techniques and TG-MS Supervisors: PhD Martina Martinello (martina9@stanford.edu) and Senior Scientist Christos Malliakas (cmalliakas@northwestern.edu) User facilities/ Postdoctoral Research Associate Minnesota University 07/2021-Present Minnesota, MN, USA XPS instrument, Characterization facility, CharFac -Research Project: Thermal evolution of the native oxide layer on Nb3Sn-coated Nb SRF grade. An In-situ angular XPS study Contact: PhD Bing Luo (luox0026@umn.edu), Senior Scientist Grigory Eremeev (grigory@fnal.gov)and Senior Scientist Sam Posen (sposen@fnal.gov) Invited Researcher Research Center for Applied Sciences and Advanced Technology, National Polytechnic Institute 01/2019-06/2019 Mexico City, Mexico National Laboratory in Energy Conversion and Storage, LNCAE -Research collaboration: Mentoring of undergraduate/graduate thesis and Electron spectroscopy (XPS) trainings Contact: Scientist Emeritus Edilso F. Reguera Ruiz (edilso.reguera@gmail.com) Visiting Researcher Institute for Nuclear Research, Hungarian Academy of Sciences 02/2016-07/2016 Debrecen, Hungary Laboratory of Electron Spectroscopy and Materials Science -Research Project: XPS study of Coordination Chemistry at the Nanoparticles Surface Contact: PhD László Kövér (lkover15@gmail.com), PhD József Tóth (toth.jozsef@atomki.mta.hu) Visiting Researcher Malaga University 09/2015-12/2015 Malaga, Spain Department of Inorganic Chemistry.Crystallography and Mineralogy -Developed project: Systematic XPS Study of Molecular Nano-porous Materials with Potential Applications in Renewable Energy Technologies Contact: Dr. Enrique Rodríguez Castellón (castellon@uma.es) Visiting Researcher Center for Nanoscience and Micro/Nanotechnologies, National Polytechnic Institute 06/2014-06/2015 Mexico City, Mexico National Laboratory of characterization of materials and nanostructures -Developed project: Advanced training in Surface Analysis using XPS spectroscopy Contact: PhD Luis Lartundo Rojas (SNI II) (llartundo@ipn.mx) Visiting undergraduate student Research Center for Applied Chemistry, CIQA 01/2012-02/2012 Saltillo, Mexico Department of Plastic Transformation Processes -Developed project: Synthesis, characterization, and monitoring phase inversion of high impact polystyrene (HIPS). Contact: Dr. Graciela E. Morales Balado (SNI II) (graciela.morales@ciqa.edu.mx) and Dr. Florentino Soriano Corral (SNI I), (florentino.soriano@ciqa.edu.mx) Internship undergraduate student Research Center for Applied Chemistry, CIQA 01/2011-02/2011 Saltillo, Mexico Department of organometallic materials synthesis -Developed project: Morphology control of Zn-oxides nanoparticles for automotive applications Contact: Dr. Graciela E. Morales Balado (SNI II) (graciela.morales@ciqa.edu.mx), Dr. Pablo Acuna (SNI I) (pablo.acuna@ciqa.edu.mx)

 

Publications and Top Noted:

First direct observation of nanometer size hydride precipitations on Superconducting Niobium Author(s): Z-H. Sung, A. Cano, A. Murthy, E. Karapetrova, J-Y. Lee, A. Grassellino and A. Romanenko arXiv Preprint arXiv:2305.01022