huang wei | engineering vibration and noise control | Best Researcher Award

Prof. Dr. huang wei | engineering vibration and noise control | Best Researcher Award 

Professor level senior engineer, Ph.d., SINOMACH Academy of Science and Technology Co. Ltd, SINOMACH Research Center of Engineering Vibration Control Technology, China

Huang Wei is a renowned expert in vibration control and noise reduction. With a strong academic background and extensive research experience, he has made significant contributions to the field of vibration engineering. His work has been recognized through various awards and honors, and he continues to be an active researcher and presenter at conferences worldwide.

Profile

orcid

Education 🎓

Huang Wei received his education in China, graduating with a degree in a relevant field. Although specific details of his educational background are not provided, his academic achievements and research experience demonstrate a strong foundation in vibration engineering and related disciplines.

Experience 💼

Huang Wei has accumulated extensive experience in vibration control and noise reduction through various research projects and collaborations. He has worked on projects funded by government agencies and industry partners, demonstrating his ability to secure funding and work with diverse stakeholders. His experience also includes presenting research at conferences and publishing papers in academic journals.

Awards and Awards 🏆

Huang Wei has received recognition for his contributions to vibration engineering, although specific details of the awards and honors are not provided. His achievements demonstrate expertise and dedication to his field, earning him a reputation as a leading researcher.

Research Focus

Huang Wei’s research focuses on vibration control, noise reduction, and related topics. He explores innovative methods and technologies to mitigate vibration and noise, with applications in various industries, including construction, manufacturing, and defense. His work aims to improve the performance, safety, and efficiency of systems and structures.

Publications 📚

1. Vibration-sensitive equipment-decoupled vibration control-mass concrete foundation-soil spring 🌆
2. MRD parameter identification and its application in semiactive vibration control of power equipment and explosive vibration 💻
3. MRD parameter identification and its application in semiactive vibration control of power equipment and explosive vibration 💥
4. MRD parameter identification and its application in power equipment vibration control and explosion isolation 🚀
5. Equipment, Building Floor Dynamic Vibration Absorption Design and Optimization 🏢
6. Comfort Technical Standards—Wind-induced, human-induced, power equipment, traffic vibration and secondary radiated noise 🗣️
7. Engineering Vibration, Secondary Radiated Noise Related Comfort Standards and Building Vibration Isolation 📊

Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof. Dr. Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof at Kyrgyz State Technical University, Kyrgyzstan

🎓Prof. Dr. Ryspek Usubamatov, an esteemed academic and innovator, has contributed immensely to mechanical, industrial, and manufacturing engineering. 🌍 Born in Kyrgyzstan, he earned his Ph.D. at Bauman Moscow State Technical University and holds over 500 publications, 61 patents, and 8 books. 📚 He has led research projects globally, including in the USA, UK, and Malaysia, and mentored numerous students. 🌟 His groundbreaking work in gyroscopic theory and high-efficiency turbines reflects his dedication to sustainable innovation.

Publication Profile

orcid

Education🎓

1994-96: Certificate in English Literature, KSTU  1994: University Administration, Kansas University, USA.  1993: Doctor of Technical Sciences, National Academy of Sciences, Kyrgyzstan. 1968-72: Ph.D., MSTU 1960-66: Professional Engineer Certificate, Mechanical Engineering, MSTU.  Multiple certifications from workshops globally in engineering, composite materials, web publishing, and business coaching.

Experience 👨‍🏫

Professor at UniMAP and UPM (2002-2016).  Professor of Automation and Production, KSTU (1972-1992).  Rector of KSTU (1992-1999).  Director, International University of Kyrgyzstan (1999-2002). Expert consultant for UNESCO and INTAS, promoting global scientific collaboration. Machine Tool Engineer, Bishkek Engineering Plant (1966-1968).

Awards and Honors🏅

State Medal for Valiant Labour, Kyrgyzstan (1982). Government Medal for Excellence in Education, Kyrgyzstan (1993) Bronze Medal, ITEX, Malaysia (2009). Silver Medal, ITEX, Malaysia (2014). Order of Merit, WIAF, Korea (2012). Fellowships and memberships in AAAS, UAMAE, and global academies.  Editorial board member of multiple scientific journals.

Research Focus⚙️

Productivity Theory for Industrial Engineering. Gyroscopic effects for rotating objects. High-efficiency turbine designs. Advanced machining processes and CNC. Automation, robotics, and material handling. Innovations in vane-type turbines and combustion engines  Dynamic system design and kinematics of machines. Econometrics and engineering collaboration projects.

Publications 📖

ptimization of Machining for the Maximal Productivity Rate of the Drilling Operations
Journal: International Journal of Mathematics for Industry
Published: August 2024 | DOI: 10.1142/S2661335224500230
Contributors: Ryspek Usubamatov, Abdusamad Abdiraimov

Maximal Productivity Rate of Threading Machine Operations
Journal: International Journal of Mathematics for Industry
Published: July 2024 | DOI: 10.1142/S2661335224500199
Contributors: Ryspek Usubamatov, Darina Kurganova, Sarken Kapayeva

Optimization of Face Milling Operations by Maximal Productivity Rate Criterion
Journal: Production Engineering
Published: June 2024 | DOI: 10.1007/s11740-023-01249-9
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov, Gabdyssalyk Riza

Gyroscopic Torques Generated by a Spinning Ring Torus
Journal: Advances in Mathematical Physics
Published: January 2024 | DOI: 10.1155/admp/5594607
Contributors: Ryspek Usubamatov, John Clayton

Theory of Gyroscopic Effects for Rotating Objects
Book: Springer
Published: 2022 | DOI: 10.1007/978-3-030-99213-2

Optimization of Machining by the Milling Cutter
Preprint: December 2022 | DOI: 10.21203/rs.3.rs-2333647/v1
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov

Inertial Forces and Torques Acting on a Spinning Annulus
Journal: Advances in Mathematical Physics
Published: September 2022 | DOI: 10.1155/2022/3371936
Contributors: Ryspek Usubamatov, Sarken Kapayeva, Zine El Abiddine Fellah

Erratum: Physics of Gyroscope Nutation
Journal: AIP Advances
Published: March 2021 | DOI: 10.1063/5.0040660

Physics of Gyroscope Nutation
Journal: AIP Advances
Published: October 2019 | DOI: 10.1063/1.5099647

Productivity Theory for Industrial Engineering
Book: Taylor and Francis, London
Published: July 2018

Conclusion

This candidate is an exceptional contender for the Research for Outstanding Scientist Award, with a remarkable track record of academic excellence, professional leadership, and contributions to mechanical engineering and manufacturing technologies. Their multidisciplinary expertise, extensive publication record, and international recognition make them a strong candidate. Enhancing focus on emerging technologies and sustainability-related applications would further strengthen their candidacy and relevance for this prestigious award.

Yuqin Wang | Mechanical system testing and control | Best Researcher Award

Prof. Yuqin Wang | Mechanical system testing and control | Best Researcher Award

University teacher at  Chaohu University, China

🌟 Yuqin Wang is an associate professor in the School of Mechanical Engineering at Chaohu University, China. 🏫 With a passion for advancing engineering education, he has made significant contributions to the design of virtual simulation systems and mechanical system testing and control. 💻🔧 Yuqin has presided over five teaching and research projects and published multiple SCI-indexed papers that enhance the engineering practice abilities of students. 📚🎓 His innovative “One Body, Two Wings” virtual simulation teaching system combines online and offline resources, fostering student innovation and professional skills in intelligent manufacturing. 🤖✨ Yuqin’s dedication to integrating technology into teaching has made him a leading figure in modern engineering education.

 

Professional Profiles:

orcid

Education 🎓

Postgraduate Degree in Mechanical Engineering Institution: Chaohu University Yuqin Wang completed his postgraduate studies focusing on mechanical system testing and control. His academic background reflects a strong commitment to integrating technology into traditional engineering disciplines, enabling innovative applications in teaching and research. ✨📚

Experience 💼

Associate Professor: Chaohu University Focused on virtual simulation, mechanical system testing, and control.  Implemented advanced teaching methodologies for intelligent manufacturing professionals.  Published 10+ SCI-indexed academic papers on engineering education.

Awards and Honors 🏆

Notable Contributions: Recognized for innovative virtual simulation teaching methodologies.  Publications: 10 SCI-indexed papers.

Research Focus 📚

Area: Virtual simulation design for intelligent manufacturing. Impact: Enhancing practical and cognitive engineering skills.

✍️Publications Top Note :

Optimization Design of Centrifugal Pump Flow Control System Based on Adaptive Control

Conclusion

Yuqin Wang is a strong contender for the Best Researcher Award due to his dedication to advancing mechanical system testing and virtual simulation. His research has significantly impacted engineering education and professional development. Addressing areas like patents, industry collaborations, and broader outreach can further solidify his position as an innovator and leader in his field.

ERHAN BAYSAL | Mechanical Engineering | Best Researcher Award

Mr. ERHAN BAYSAL |  Mechanical Engineering | Best Researcher Award

Lecturer at Laser Research Centre, Zonguldak Bülent Ecevit Üniversitesi, China

Erhan Baysal is a Lecturer at Bülent Ecevit University, specializing in Mechanical Engineering. With a strong background in materials science and manufacturing processes, particularly in friction welding, he has contributed to numerous academic publications. His academic journey spans various prestigious institutions, and he actively participates in research and academic projects related to material behavior, mechanical design, and welding technologies. 📚🔧👨‍🏫

Profile

scholar

Education 🎓

Master’s in Mechanical Engineering, Bülent Ecevit University, 2019 🎓Bachelor’s in Mechanical Engineering, Fırat University, 2013

Experience 🏫💻

Lecturer, Bülent Ecevit University, 2016–present 🎓Researcher in national projects on manufacturing processes 🛠️Instructor in various courses including Strength of Materials and Manufacturing Processes

Awards and Honors 🏆

Contributor to several peer-reviewed articles in international journalsPublished in prestigious conferences and journals on materials and welding technologies 📑Awarded for his contribution to applied research in friction welding and mechanical design 🌍

Research Focus🔬🔩

Erhan Baysal’s research focuses on materials science, particularly the mechanical behavior and welding of aluminum alloys using friction stir welding. He also explores deformation processes in material shaping and manufacturing optimization.

Publication  Top Notes

An Overview of Deformation Path Shapes on Equal Channel Angular Pressing” (2022)

Authors: E. Baysal, O. Koçar, E. Kocaman, U. Köklü

Journal: Metals 12 (11), 1800

Summary: This paper discusses the deformation paths formed during equal channel angular pressing (ECAP). The study focuses on how different processing parameters, such as the angle of the channels, affect the microstructure and mechanical properties of the material.

“Mechanical Behavior of a Friction Welded AA6013/AA7075 Beam” (2022)

Authors: O. Koçar, M. Yetmez, E. Baysal, H.A. Ozyigit

Journal: Materials Testing 64 (2), 284-293

Summary: This research investigates the mechanical properties of beams made from AA6013 and AA7075 aluminum alloys joined via friction welding. The study examines the mechanical behavior of the weld joint, focusing on parameters such as strength, hardness, and fracture toughness.

“A New Approach in Part Design for Friction Stir Welding of 3D-Printed Parts with Different Infill Ratios and Colors” (2024)

Authors: O. Koçar, N. Anaç, E. Baysal

Journal: Polymers 16 (13), 1790

Summary: This paper introduces a novel approach to part design for friction stir welding (FSW) of 3D-printed parts. The study evaluates how different infill ratios and colors in 3D printing affect the welding process, quality, and mechanical properties of the final product.

“Eşit Kanallı Açısal Presleme Yönteminde Kanal Açılarının ve İç Köşe Kavisinin Deformasyona Etkisinin Sonlu Elemanlar Metodu ile İncelenmesi” (2023)

Authors: E. Baysal, O. Koçar, N. Anaç, F. Darıcı

Journal: Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 38 (3), 859-873

Summary: This paper investigates the effect of channel angles and inner corner radii on deformation during equal channel angular pressing (ECAP) using finite element method (FEM) simulations. The research provides insights into how these factors influence material flow and structural integrity.

“Görüntü İşleme Teknikleri ile Rulo Sac Hassas Doğrultmada Silindir Konumlarının Belirlenmesi” (2021)

Authors: O. Koçar, S. Dikici, H. Uçar, E. Baysal

Journal: El-Cezeri 8 (2), 604-617

Summary: This article explores the use of image processing techniques to determine the cylinder positions in precision flattening of rolled sheets. The study demonstrates how computer vision can enhance manufacturing processes, particularly in achieving high precision in material deformation.

“3B Yazıcıda Üretilen Plakaların Sürtünme Karıştırma Kaynak Parametrelerinin YSA ile Tahmini” (2024)

Authors: N. Anaç, O. Koçar, E. Baysal

Journal: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 (1), 176-187

Summary: This paper presents a prediction model using artificial neural networks (ANN) to estimate the parameters for friction stir welding of 3D-printed plates. The research focuses on optimizing welding conditions to improve the quality and strength of the welded joints.

“Etial 180 Alaşımına İlave Edilen Bakırın Mikroyapı, Sertlik ve Korozyon Üzerindeki Etkisi” (2023)

Authors: E. Kocaman, E. Baysal, O. Koçar, A.S. Güldibi, S. Şirin

Journal: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 (2), 604-611

Summary: This study investigates the impact of adding copper to Etial 180 alloy, focusing on its effect on microstructure, hardness, and corrosion resistance. The findings highlight the potential improvements in material properties when copper is incorporated into the alloy.

“Barkhausen Noise as A Magnetic Nondestructive Testing Technique”

Authors: Ö. Adanur, O. Koçar, A.S. Güldibi, E. Kocaman, E. Baysal

Journal: Black Sea Journal of Engineering and Science 7 (4), 7-8

Summary: The paper explores the use of Barkhausen noise as a nondestructive testing (NDT) technique to assess the magnetic properties of materials. This method is useful in evaluating the integrity and structural health of components without causing damage.

“AA6013/AA7075 Alüminyum Malzemelerin Sürtünme Kaynağı Yöntemiyle Birleştirilmesi ve Analizi”

Authors: E. Baysal, O. Koçar, M. Yetmez, H.A. Ozyigit

Summary: This research focuses on the friction stir welding (FSW) of AA6013 and AA7075 aluminum alloys, analyzing the mechanical properties, microstructure, and joint quality achieved by this welding method.

Conclusion

Erhan Baysal has shown exceptional dedication to advancing mechanical engineering through his research and teaching. His focus on cutting-edge manufacturing technologies, coupled with his broad publication history, makes him a strong candidate for the Best Researcher Award. With further interdisciplinary integration and industry collaborations, he could significantly elevate the practical applications of his research, solidifying his role as a leading figure in the field. His ongoing work promises to continue shaping the future of mechanical engineering.