Guoxin Sui | Polymer Composites | Best Researcher Award

Prof. Dr. Guoxin Sui | Polymer Composites | Best Researcher Award

Professor,Institute of Metal Research, CAS, China

Dr. Guangxu Sui is a Professor at the Institute of Metal Research, Chinese Academy of Sciences. He received his Ph.D. in Materials Science and Engineering from the Institute of Metal Research in 1993. His research focuses on polymer blends, composites, and nano-composites. He has published numerous papers and holds several academic appointments.

Profile

scopus

Education 🎓

Physics, Jilin University, China (1987) Materials Science, Jilin University, China (1990) Ph.D. in Materials Science and Engineering, Institute of Metal Research, Chinese Academy of Sciences, China (1993)

Experience 🧪

– Assistant Professor, Institute of Metal Research, Chinese Academy of Sciences, China (1994-1997)
– Visiting Scholar/Research Associate, Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong (1996-1998)
– Associate Professor, Institute of Metal Research, Chinese Academy of Sciences, China (1997-1998)
– Research FellowUnfortunately, the provided text does not mention any specific awards or honors received by Dr. Guangxu Sui.
, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore (1998-2001)
– Professor, Institute of Metal Research, Chinese Academy of Sciences, China (2006-present)

Awards & Honors �

Unfortunately, the provided text does not mention any specific awards or honors received by Dr. Guangxu Sui.

Research Focus 🔍

1. Polymer Blends and Composites: Investigating the processing, microstructures, and mechanical properties of polymer blends and composites.
2. Fracture and Toughening: Studying the fracture and toughening mechanisms of polymers and polymer composites.
3. Nano-Composites: Examining the processing and properties of nano-composites.
4. Cellulose and Cellulose-Based Composites: Investigating the properties and applications of cellulose and cellulose-based composites.
5. Graphene-Based Nano-Composites: Studying the properties and applications of graphene-based nano-composites.
6. Natural Fiber Composites: Examining the properties and applications of natural fiber composites.

Publications📚

1. Tribological Behavior of Self-Lubricating PEEK/Graphite/Ti3SiC2 Composites Under Dry Sliding Friction 🔩
2. Synergy of Hierarchical Structures and Multiple Conduction Mechanisms for Designing Ultra-Wide Linear Range Pressure Sensors 📊
3. Supramolecular-Wrapped α-Zirconium Phosphate Nanohybrid for Fire Safety and Reduced Toxic Emissions of Thermoplastic Polyurethane 🚒
4. Multifunctional Ti3AlC2-Based Composites via Fused Filament Fabrication and 3D Printing Technology 🖨️
5. Porous Structure Induced Crack Redistribution in Surface Conductive Layer for High-Performance Fiber-Based Flexible Strain and Pressure Sensors 📈
6. Using Renewable Phosphate to Decorate Graphene Nanoplatelets for Flame-Retarding, Mechanically Resilient Epoxy Nanocomposites 🔥
7. Cellulose In Situ Formation of Three Primary Nanoparticles for Polymer Scalable Colors 🎨

Conclusion 🏆

Guangxu Sui’s impressive academic and research experience, interdisciplinary research approach, funding and project management experience, publication record, and teaching and mentorship experience make him a strong candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his potential to make a significant impact in his field.

Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

Prof. Dr. Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

professor, University of Silesia, Katowice, China

Prof. Dr. Julian Plewa is a distinguished materials scientist with expertise in metallurgy, nanotechnology, and optical materials. With a career spanning over five decades, he has held academic and research positions at leading institutions in Poland and Germany. His contributions to high-temperature superconductors, thermoelectrics, and mechanical metamaterials have advanced the field of materials science. Currently a professor at the University of Silesia, he continues to pioneer innovations in functional materials and optical materials.

Profile

orcid

Education 🎓

Master of Science in Metallurgy – AGH University of Science and Technology, Cracow, 1973 Doctor of Philosophy in Technical Sciences – AGH University of Science and Technology, 1979 Habilitated Doctor in Materials Science – Silesia University of Technology, Gliwice, 2005

Experience 🏫

Lecturer – Silesia University of Technology (1981–1988) Teaching Assistant – University of Applied Sciences Muenster (2010–2017)  Visiting Professor – Cracow University of Technology (1995–2017) Professor – University of Silesia (2019–present)

Awards & Honors 🏆

Recognized for contributions to non-ferrous metallurgy Honored for advancements in high-temperature superconductors Awarded for innovative research in thermoelectrics mAcknowledged for breakthroughs in optical materials and mechanical metamaterials

Research Focus 🔬

Non-ferrous metallurgy – Lead refining, zinc spraying Sustainable materials – Battery recycling, aluminum foil reuse Advanced materials – High-temperature superconductors, thermoelectrics Optical materials – Phosphors, specialty glass Mechanical metamaterials – Structural innovations and applications

Publications 📚

📄 Auxetic Structures & Mechanical Metamaterials
🔹 J. Plewa, M. Plonska, P. Lis, Investigation of Modified Auxetic Structures from Rigid Rotating Squares, Materials 15(2022) 2848

📄 Lanthanide & Glass Crystallization
🔹 J. Plewa et al., Crystallization of Lanthanide—Ho³⁺ and Tm³⁺ Ions Doped Tellurite Glasses, Materials 15(2022) 2662
🔹 M. Płońska, J. Plewa, Crystallization of GeO₂-Al₂O₃-Bi₂O₃ Glasses, Crystals 10(2020) 522

📄 Optical & Luminescent Materials
🔹 J. Plewa et al., Partial Crystallization of Er³⁺/Yb³⁺ Co-Doped Oxyfluoride Glass, Materials Engineering 39(2018) 204
🔹 T. Dierkes, J. Plewa et al., From Metals to Nitrides – Rare Earth Binary Systems, J. Alloys & Compounds 693(2017) 291
🔹 A. Katelnikovas, J. Plewa et al., Yellow Emitting Garnet Phosphors for pcLEDs, J. Luminescence 136(2013) 17
🔹 J. Plewa, T. Jüstel, Pr³⁺ Doped UV Emitting Luminescent Ceramics, Materials Science Forum 636-637(2010) 344

📄 Superconductors & Thermoelectric Materials
🔹 J. Plewa et al., Preparation & Characterization of Calcium Cobaltite for Thermoelectric Applications, Eur. Ceramic Society 25(2005) 1997
🔹 J. Plewa et al., Superconducting Materials for Electronic Applications, Physica C 372-376(2002) 1046
🔹 K. Itoh, J. Plewa et al., RF Magnetic Shielding Effect of a Sealed Bottom Cylinder, Applied Superconductivity Conf. Proc. (2000)

Conclusion 🎯

This researcher is highly suitable for the Research Visionary in Materials Mechanics Award, given their long-standing impact on materials science, mechanical metamaterials, and sustainable material innovation. By expanding industry collaboration, integrating computational mechanics, and increasing patent applications, their contributions could reach even greater heights in the field of materials mechanics. 🚀

 

Søren Taverniers | Mechanics of Functional Materials | Best Researcher Award

Dr. Søren Taverniers | Mechanics of Functional Materials | Best Researcher Award

Research Scientist at Stanford University, United States

Dr. Sorentav is a computational scientist specializing in energy science and engineering. With expertise in neural networks, physics-informed machine learning, and computational fluid dynamics, he has contributed significantly to advancing numerical modeling techniques. His research focuses on shock physics, subsurface flows, additive manufacturing, and uncertainty quantification. He has developed innovative computational frameworks for high-fidelity simulations and accelerated engineering applications. Dr. Sorentav has published in leading scientific journals, reviewed research papers, and supervised students and interns. His interdisciplinary approach bridges machine learning with physics-based simulations, enhancing predictive accuracy in various domains. He is proficient in multiple programming languages, including Python, C++, MATLAB, and OpenFOAM, and has a strong background in Unix/Linux environments. Through collaborations with academic institutions and industry, he has contributed to cutting-edge projects in materials science, energy systems, and computational mechanics.

Pofile

scholar

Education 

Dr. Sorentav holds a Ph.D. in Computational Science from the University of California, San Diego (UCSD), where he developed novel numerical techniques for solving complex physics-informed problems in energy and material sciences. His doctoral research focused on advancing simulation accuracy for multiphysics systems, particularly in shock-particle interactions and uncertainty quantification. Prior to his Ph.D., he earned a Master’s degree in Computational Science from UCSD, specializing in physics-informed neural networks and high-performance computing. He also holds a Bachelor’s degree from Katholieke Universiteit Leuven, where he built a solid foundation in applied mathematics, fluid dynamics, and numerical modeling. Throughout his academic career, Dr. Sorentav has received multiple awards for research excellence, including recognition for his Ph.D. dissertation. His education has equipped him with expertise in Monte Carlo simulations, finite difference/volume methods, and applied probability, which he integrates into cutting-edge computational science applications.

Experience

Dr. Sorentav has extensive experience in computational modeling, numerical methods, and physics-informed machine learning. He has worked on developing and validating high-fidelity simulations for energy applications, materials science, and shock physics. His research contributions include designing neural network architectures for scientific computing, implementing uncertainty quantification methods, and improving computational efficiency in large-scale simulations. Dr. Sorentav has collaborated with leading institutions, including Stanford University and UCSD, to accelerate computational model development for industrial and research applications. He has also contributed to proposal writing, conference presentations, and peer-reviewed journal publications. His technical expertise spans various software tools, including PyTorch, OpenFOAM, MATLAB, FEniCS, and Mathematica. Additionally, he has experience supervising student research projects, mentoring interns, and leading interdisciplinary teams. His work integrates applied probability, numerical analysis, and machine learning to address challenges in subsurface flows, additive manufacturing, and compressible fluid dynamics.

Publications

Graph-Informed Neural Networks & Machine Learning in Multiscale Physics

Graph-informed neural networks (GINNs) for multiscale physics ([J. Comput. Phys., 2021, 33 citations])

Mutual information for explainable deep learning in multiscale systems ([J. Comput. Phys., 2021, 15 citations])

Machine-learning-based multi-scale modeling for shock-particle interactions ([Bulletin of the APS, 2019, 1 citation])

These papers focus on integrating neural networks into multiscale physics, leveraging explainability techniques, and improving shock-particle simulations through ML.

2. Monte Carlo Methods & Uncertainty Quantification

Estimation of distributions via multilevel Monte Carlo with stratified sampling ([J. Comput. Phys., 2020, 32 citations])

Accelerated multilevel Monte Carlo with kernel-based smoothing and Latinized stratification ([Water Resour. Res., 2020, 19 citations])

Impact of parametric uncertainty on energy deposition in irradiated brain tumors ([J. Comput. Phys., 2017, 4 citations])

This work revolves around Monte Carlo methods, uncertainty quantification, and their applications in medical physics and complex simulations.

3. Stochastic & Hybrid Models in Nonlinear Systems

Noise propagation in hybrid models of nonlinear systems ([J. Comput. Phys., 2014, 16 citations])

Conservative tightly-coupled stochastic simulations in multiscale systems ([J. Comput. Phys., 2016, 9 citations])

A tightly-coupled domain decomposition approach for stochastic multiphysics ([J. Comput. Phys., 2017, 8 citations])

This research contributes to computational physics, specifically in stochastic and hybrid system modeling.

4. Computational Fluid Dynamics (CFD) & Shock-Wave Interactions

Two-way coupled Cloud-In-Cell modeling for non-isothermal particle-laden flows ([J. Comput. Phys., 2019, 7 citations])

Multi-scale simulation of shock waves and particle clouds ([Int. Symp. Shock Waves, 2019, 1 citation])

Inverse asymptotic treatment for capturing discontinuities in fluid flows ([J. Comput. Sci., 2023, 2 citations])

S. Taverniers has significantly contributed to shock-wave interaction modeling, with applications in aerodynamics and particle-fluid interactions.

5. Computational Plasma & Dielectric Breakdown Modeling

2D particle-in-cell modeling of dielectric insulator breakdown ([IEEE Conf. Plasma Science, 2009, 11 citations])

This early work focuses on plasma physics and dielectric breakdown simulations.

6. Nozzle Flow & Additive Manufacturing Simulations

Finite element methods for microfluidic nozzle oscillations ([arXiv, 2023])

Accelerating part-scale simulations in liquid metal jet additive manufacturing ([arXiv, 2022])

Modeling of liquid-gas meniscus dynamics in arbitrary nozzle geometries (US Patent, 2024)

Conclusion

Based on their remarkable academic achievements, innovative research, and ability to collaborate effectively across disciplines, this candidate is highly deserving of the Best Researcher Award. However, by broadening their industrial collaborations, increasing their research visibility, and considering the wider impact of their work, they could elevate their research contributions even further, making an even greater impact on both academia and industry.

 

chunhong gong | composites | Best Researcher Award

Prof. Dr. chunhong gong | composites | Best Researcher Award

Prof.at Henan University, china

Chunhong Gong, Ph.D., is a professor and doctoral supervisor at Henan University, specializing in nanomaterials and electromagnetic protection. She earned her Ph.D. from Henan University in 2008 and has led multiple National Natural Science Foundation projects. With over 50 publications in top-tier journals, her work spans high-performance magnetic–dielectric composites, carbon-based multifunctional nanomaterials, and their applications in energy conversion systems.

Publication Profile

scopus

Education 🎓

Ph.D. in Materials Science, Henan University (2008) | Extensive research in nanomaterials and composites | Strong academic foundation in energy conversion and electromagnetic materials | Contributor to innovative material design and macro preparation methods | Expertise in functional materials with real-world applications

Experience 🏢

Professor & Doctoral Supervisor, Henan University | Principal investigator in four National Natural Science Foundation projects | Published 50+ papers in high-impact journals | Extensive research in nanomaterial applications and multifunctional composites | Key contributor to energy-efficient material innovations

Awards & Honors 🏅

Recipient of multiple research grants from the National Natural Science Foundation | Recognized for contributions to nanomaterials and electromagnetic protection | Published in esteemed journals like Advanced Functional Materials, Nano Letters, and Nano Research | Leading figure in magnetic–dielectric composite advancements

Research Focus 🔬

High-performance & low-cost magnetic–dielectric composites | Carbon-based multifunctional nanomaterials | Structural design & macro preparation of nanomaterials | Energy conversion system applications | Wide-temperature-range electromagnetic protection materials

Publications 📖

Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum  24 Citations

Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 32 Citations

Efficient Production of Graphene through a Partially Frozen Suspension Exfoliation Process: An Insight into the Enhanced Interaction Based on Solid-Solid Interfaces 2 Citations

Conclusion

Dr. Chunhong Gong is a highly qualified candidate for the Best Researcher Award, with significant contributions in magnetic–dielectric composites, carbon-based nanomaterials, and electromagnetic protection materials. Her research impact is evident through high-quality publications, leadership in funded projects, and mentorship. To further strengthen her candidacy, expanding industry collaborations, securing additional global recognitions, and contributing to commercialization efforts could enhance her profile as a top contender for the award.

Hasi Rani Barai | Nanocomposite materials | Best Researcher Award

Assist Prof Dr. Hasi Rani Barai | Nanocomposite materials | Best Researcher Award

Assistant Professor at Yeungnam University, South Korea

Dr. Hasi Rani Barai is an accomplished Assistant Professor at Yeungnam University, Republic of Korea, specializing in materials science and nanotechnology. She completed her postdoctoral research in artificial photosynthesis at Sogang University and nanomaterials at Ewha Womans University. Dr. Barai has earned global recognition for her innovative work in energy storage devices and nanocomposite materials. She holds a Ph.D. from Inha University and has published extensively in high-impact journals. Her career is marked by a deep commitment to advancing materials engineering and green energy solutions.

Publication Profile

Education 🎓

Ph.D. (2010–2013): Inha University, South Korea, under Prof. H.W. Lee – Research in physical organic mechanisms, nanomaterials, and high-energy materials. M.S. (2006–2008): University of Dhaka, Bangladesh, under Prof. M. Muhibur Rahman – Specialized in laser spectroscopy and physical chemistry. B.Sc. (2000–2006): University of Dhaka, Bangladesh, under Prof. M. Muhibur Rahman – Studied chemistry with a focus on nanomaterials and spectroscopy.

Experience 🔬 

Assistant Professor (2015–present): Yeungnam University, South Korea – Leading research in nanocomposites, energy storage, and biosensors Postdoctoral Fellow (2013–2015): Sogang University, South Korea – Focused on artificial photosynthesis and nanocatalysts for CO2 reduction. Postdoctoral Fellow (2013): Ewha Womans University, South Korea – Researched nanoparticles for energy storage. Research Fellow: Expert in supercapacitors, electrochemistry, and MOFs.

Awards and Honors 🏅

KCAP Fellowship: Awarded for outstanding research in artificial photosynthesis and nanomaterials at Sogang University. Best Paper Award: Recognition for top-tier research publications in energy storage systems. International Research Grants: Secured multiple research grants to advance the field of nanotechnology and green energy. Young Scientist Award: Honored for innovative contributions in the field of materials science and energy devices.

Research Focus 🔍 

Materials Science & Engineering: Specializes in nanocomposites, supercapacitors, and biosensors. Electrochemistry & Energy Storage: Focus on supercapacitors, nanoparticles, and energy storage devices for sustainable technologies. Nanotechnology & Catalysis: Research in nanocatalysts, MOFs, and CO2 reduction for artificial photosynthesis. Green Energy: Leading innovations in renewable energy solutions using nanomaterials and advanced electrochemistry.

Publication  Top Notes

High-Performance Battery-Type Supercapacitors: Investigated the growth of nanorods/nanospheres on conductive frameworks for energy storage. ACS Applied Materials & Interfaces, July 2024. DOI: 10.1021/acsami.4c03109

Detection of Polymorphisms in FASN, DGAT1, and PPARGC1A Genes: Analyzed gene associations with milk yield and composition traits in river buffalo. Animals, June 2024. DOI: 10.3390/ani14131945

Conductive Gels for Energy Storage and Conversion: Studied design strategies for materials used in energy applications. Materials, May 2024. DOI: 10.3390/ma17102268

Antibiotic Resistance in Plant Pathogenic Bacteria: Discussed environmental impacts and biocontrol agents. Plants, April 2024. DOI: 10.3390/plants13081135

pH-Sensitive Hydrogel Membrane for Dye Water Purification: Developed sodium alginate/poly(vinyl alcohol) hydrogel for environmental applications. ACS ES&T Water, February 2024. DOI: 10.1021/acsestwater.3c00567

 

Conclusion

Dr. Hasi Rani Barai is highly suitable for the Best Researcher Award due to her remarkable achievements in the fields of nanocomposite materials, energy storage, and artificial photosynthesis. Her extensive academic and research career reflects excellence in innovative materials science, positioning her as a leading researcher in cutting-edge technologies that address global challenges. By fostering international collaborations and emphasizing applied research, Dr. Barai’s already stellar portfolio could reach even greater heights, making her a deserving candidate for this award.

Subrat Kumar Behera | Constitutive modelling | Young Scientist Award

Dr. Subrat Kumar Behera | Constitutive modelling | Young Scientist Award

Dr. University of Louisville, United States

Dr. Subrat Kumar Behera is a dedicated researcher with expertise in smart material mechanics and the dynamics of smart material systems. He holds a Ph.D. in Mechanical Engineering from IIT Patna, where he developed constitutive models for electro-magneto active soft solids. His M.Tech. research at VSSUT focused on the dynamics of laminated composite plates. Currently, a Postdoctoral Fellow at the University of Louisville, he works on material modeling of lithium-ion battery components and architect metamaterials. His research interests include continuum mechanics, constitutive modeling, electro-magneto-viscoelasticity, soft material mechanics, and nonlinear dynamics. Dr. Behera has received several awards, including a Best Paper Award at IPRoMM 2022.

 

Professional Profiles:

Google scholar

🎓 EDUCATION

Ph.D. – Mechanical Engineering | 2019 – 2023IIT Patna – Bihta, Bihar (India)Passed with 8.14 CGPA.Thesis Title: Constitutive Modeling of Electro-magneto-viscoelastic Smart Materials with Applications.Supervisor: Dr. Somnath SarangiM. Tech. – Machine Design & Analysis (Mechanical Engineering) | 2016 – 2018VSSUT – Burla, Odisha (India)Passed with 8.68 CGPA.Thesis Title: Free vibration analysis of undamped laminated composite plates.Supervisor: Dr. Mihir Kumar SutarB. Tech. – Mechanical Engineering | 2011 – 2015BPUT – Rourkela, Odisha (India)Passed with 7.72 CGPA.Higher Secondary Examination Certificate, Odisha(HSEC) | 2009 – 2011Council of Higher Secondary Education, Odisha(CHSE)Passed with 73.66 %.High School Certificate Examination, Odisha (HSCE) | 2009Board of Secondary Examination, Odisha (BSE)Passed with 85.66 %.

🧑‍🔬 RESEARCH EXPERIENCE

Post Doctoral Researcher | 2023-OngoingTool: MATLAB, LaTex, Microsoft OfficeResearch Topic: Lithium-ion battery component and architect metamaterialsBrief Research: Currently working on the constitutive material modeling of lithium-ion battery components and architect metamaterials. The primary objective is to develop a physics-based constitutive law that effectively demonstrates the inelastic phenomenon under large deformation.

📜 PROFILE – ABOUT ME

Dr. Subrat Kumar Behera is a dedicated researcher with expertise in the domains of smart material mechanics and the dynamics of smart material systems. His strong academic foundation forms the cornerstone of his research journey. His enthusiasm for his research field is enhanced by his extensive practical expertise, honed through dedicated research during his postgraduate studies. His doctoral work focused on the constitutive modeling of electro-magneto active soft solids and their applications in real-world scenarios, demonstrating a commitment to understanding the complex behaviors of smart materials. In his Master’s research, he explored the dynamics of laminated composite plates, showcasing early expertise in advanced material systems. His primary research interests include the following:⚙️ Continuum mechanics🧩 Constitutive modeling⚡️ Electro-magneto-visoelasticity🌐 Soft material mechanics🧬 Soft architect metamaterials📈 Non-linear dynamicsHe is constantly working towards acquiring more knowledge to work on new aspects of his research area. He is actively looking for an academic and R&D position in the above-mentioned research domain, where he can utilize all his skills to get new insights into the field of smart materials and systems and contribute to technological development.

💼 WORK EXPERIENCE

Postdoctoral Fellow | Dec. 2023 – OngoingDepartment of Mechanical Engineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY-40292, United States🔬 Projects: To develop constitutive material modeling and validation of battery components and 3D printable polymers.🎯 Objective: To incorporate strain rate effect for large deformation polymeric separator and soft architect metamaterials.Teaching Assistant | 2019 – 2023Department of Mechanical Engineering, IIT Patna, Bihta – 801106, Bihar, India📚 Subjects: Dynamics, Engineering Mechanics, Composite Materials.🛠️ Workshop: Foundry shop, CNC Centre.

🏆 ACHIEVEMENTS

OJEE | Odisha Joint Entrance Examination | Qualified in 2011.OUAT | Odisha University of Agriculture and Technology | Qualified in 2011.GATE | Graduate Aptitude Test in Engineering | Mechanical Engineering (Me) | Qualified in 2016.Awards & Honours:🥇 First candidate at the institute (IIT Patna) to earn a Ph.D. via express mode thesis evaluation.🏅 Best Paper Award in conference IPRoMM 2022 – at IIT(ISM) Dhanbad, India. December 22-23, 2022.💰 JRF and SRF equivalent monthly scholarship (Ministry of Education), Government of India, during Ph.D. (January 2019-Present), an annual contingency grant of INR 10000.00 and national/international conference travel grant of INR 100000.00.

✍️Publications Top Note :

Modeling of Electro–Viscoelastic Dielectric Elastomer: A Continuum Mechanics Approach

Authors: SK Behera, D Kumar, S Sarangi

Journal: European Journal of Mechanics-A/Solids

Volume: 90

Article: 104369

Cited By: 28

Year: 2021

2. Constitutive Modeling of Damage-Induced Stress Softening in Electro-Magneto-Viscoelastic Materials

Authors: SK Behera, D Kumar, S Sarangi

Journal: Mechanics of Materials

Volume: 171

Article: 104348

Cited By: 10

Year: 2022

3. Field Dependent Magneto-Viscoelasticity in Particle Reinforced Elastomer

Authors: SK Behera, RA Ranjan, S Sarangi

Journal: European Journal of Mechanics-A/Solids

Volume: 99

Article: 104929

Cited By: 6

Year: 2023

4. Dynamic Modelling and Analysis of a Biological Circular Membrane

Authors: SK Behera, RA Ranjan, D Kumar, S Sarangi, R Bhattacharyya

Journal: International Journal of Engineering Science

Volume: 188

Article: 103864

Cited By: 3

Year: 2023

5. An Alternative Form of Energy Density Function Demonstrating the Electro-Elastic Deformation of a Dielectric Cylindrical Actuator

Authors: D Kumar, SK Behera, K Arya, S Sarangi

Journal: Mechanics of Soft Materials

Volume: 4 (1)

Article: 3

Cited By: 3

Year: 2022

6. Nonlinear Dynamics of an Artificial Muscle with Elastomer–Electrode Inertia: Modelling and Analysis

Authors: RA Ranjan, SK Behera, S Sarangi

Journal: Chaos, Solitons & Fractals

Volume: 174

Article: 113820

Cited By: 2

Year: 2023

7. Finite Deformation of a Dielectric Cylindrical Actuator: A Continuum Mechanics Approach

Authors: D Kumar, SK Behera, S Sarangi

Journal: Recent Advances in Computational Mechanics and Simulations: Volume-II: Nano …

Cited By: 2

Year: 2021

8. Constitutive Modeling of Electro-Magneto-Rheological Fluids Before Yielding

Authors: SK Behera, S Sarangi

Journal: Mechanics Research Communications

Volume: 136

Article: 104253

Cited By: 1

Year: 2024

9. Emergence of Chaos and Its Control in a Dissipative Dielectric Elastomeric Membrane System Under Periodic Loads

Authors: SK Behera, RA Ranjan, S Sarangi, AK Samantaray, R Bhattacharyya

Journal: Journal of Sound and Vibration

Volume: 577

Article: 118328

Year: 2024

10. Nonlinear Dynamics and Chaos Control of Circular Dielectric Energy Generator

Authors: SK Behera, RA Ranjan, S Sarangi, AK Samantaray, R Bhattacharyya

Journal: Communications in Nonlinear Science and Numerical Simulation

Volume: 128

Article: 107608

Year: 2024

11. Universal Rate-Dependence in Electro-Magneto-Active Polymeric Composites

Authors: SK Behera, D Kumar, CS Maurya, S Sarangi

Journal: Composites Science and Technology

Volume: 237

Article: 110015

Year: 2023

12. Nonlinear Oscillation of Biological Membrane: A Lumped Parameter Modelling Approach

Authors: RA Ranjan, SK Behera, S Sarangi

Conference: International Conference on Industrial Problems on Machines and Mechanism

Year: 2022

13. Free Vibration Analysis and Investigation of Mechanical Properties of Un-Damped Woven Roving Laminated Composite Plate Using Different Boundary Conditions

Authors: MK Sutar, SK Behera, S Pattnaik

Journal: Materials Science Forum

Volume: 978

Pages: 264-270

Year: More details

 

Avraam isayev | Nanocomposites | Best Researcher Award

Prof Dr avraam isayev | Nanocomposites | Best Researcher Award

Ph.D. in Polymer Engineering and Science – USSR Academy of Sciences, Moscow.

Prof. Dr. Avraam Isayev is a distinguished figure in the field of polymer engineering and education, with a career spanning several decades. He is known for his significant contributions to academia, particularly during his tenure at the University of Akron, Ohio, USA. Throughout his career, Dr. Isayev has held various esteemed positions, including Distinguished Professor Emeritus, Adjunct Professor, Distinguished Professor, Interim Director, Director, Associate Professor, and Professor. Notably, he played a pivotal role as the Director of the Molding Technology Research and Development Center (MOLDTECH) from 1990 to 2009. Dr. Isayev is a member of several prestigious professional societies, including the Society of Plastics Engineers, the Society of Rheology, the Rubber Division of the ACS, the Polymer Processing Society, the American Chemical Society, the American Institute of Chemical Engineers, the American Ceramic Society, and the Tire Society. His exceptional contributions to the field have been recognized through numerous awards and honors, solidifying his reputation as a leading authority in polymer engineering. Dr. Isayev’s work has significantly impacted the field of polymer science and engineering, making him a highly respected figure in his field.

 

Professional Profiles:

 

Education:

 Dr. Avraam Isayev is a highly accomplished scholar and researcher with an extensive academic background in engineering and mathematics. He earned his Master of Science degrees in Chemical Engineering from the Azerbaijan Institute of Oil and Chemistry in Baku, USSR, in 1964, and in Applied Mathematics from the Moscow Institute of Electronic Machine Building in Moscow, USSR, in 1975. His educational journey culminated in a Ph.D. in Polymer Engineering from the Topchiev Institute of Petrochemical Synthesis and Science at the USSR Academy of Sciences in Moscow in 1970. These academic achievements laid the foundation for Dr. Isayev’s illustrious career in the field of polymer engineering, where he has made significant contributions to research, education, and professional development. His expertise and dedication have earned him recognition as a leading authority in his field.

 

Employment:

Dr. Avraam Isayev is a distinguished academician and researcher with a remarkable career spanning over five decades. He has held various prestigious positions in the field of polymer engineering, including Distinguished Professor Emeritus and Adjunct Professor at the University of Akron, Ohio, USA. Dr. Isayev’s journey began with his doctoral studies and research at the Institute of Petrochemical Synthesis of the USSR Academy of Sciences in Moscow, where he later served as a Research Associate. Throughout his career, he has contributed significantly to academia, industry, and research institutions globally, leaving an indelible mark on the field of polymer engineering.

Award and Honor:

Dr. Avraam Isayev is a distinguished figure in the field of polymer engineering, renowned for his extensive contributions to research, academia, and industry. Throughout his illustrious career, Dr. Isayev has been recognized with numerous awards and honors, including the Melvin Mooney Distinguished Technology Award from the Rubber Division of the American Chemical Society (ACS) in 1999 and the George S. Whitby Award for Distinguished Teaching and Research from the ACS in 2011. His innovative work has earned him accolades such as the NorTech Innovation Award for Ultrasonic Devulcanization Extruder and Technology in 2011 and the James L. White Innovation Award from The Polymer Processing Society in 2012. Dr. Isayev’s impact extends beyond the academic sphere, as demonstrated by his 2017 election as a Member of the European Union Academy of Sciences (EUAS) and his nomination for the 2018 ENI Award in Advanced Environmental Solutions. He has also been recognized for his influential contributions to materials science, being ranked among the top 2% of scientists worldwide within his specialty area throughout his career. Dr. Isayev’s remarkable achievements underscore his dedication to advancing the field of polymer engineering and his significant impact on the global scientific community.

Research Interest:

Dr. Avraam Isayev’s research interests span a wide range of topics within the field of polymer engineering. His expertise encompasses polymer processing, rheo-optics, and the rheology of polymers, with a focus on their applications in oil products and disperse systems. Dr. Isayev has made significant contributions to molding technologies, including injection, co-injection, transfer, compression, and gas-assisted injection molding of polymers. His work extends to the development of self-reinforced or in-situ composites based on liquid crystal polymers (LCP), as well as the continuous decrosslinking of thermosets and rubbers. Dr. Isayev is also known for his research in copolymerization of polymer blends using high-power ultrasound, and he has explored the realm of high-temperature and high-performance nanocomposites. Additionally, he has worked on developing constitutive equations and process modeling techniques to enhance the understanding and optimization of polymer processes. Dr. Isayev’s diverse research portfolio underscores his commitment to advancing the fundamental understanding and practical applications of polymer engineering.

Service to the University of Akron:

Dr. Avraam Isayev has played an active role in various administrative and advisory capacities throughout his tenure. He served as a Faculty Observer on the Board of Trustees in 1991/92 and was a member of the Advisory Committee to the President in 1989/90, 1991/92, and 2005/2006. Dr. Isayev was also a part of the University Council from 1988 to 1992 and contributed to the Advisory Committee to the Provost in 1990/91 and 1994/95. His dedication to improving faculty status is evident from his involvement in the Ad Hoc Committee on Mechanisms to Enhance Faculty Status from 1985 to 1987 and the Library Committee from 1989 to 1991. Additionally, he chaired the Faculty Search Committee for the Department of Polymer Engineering on several occasions and was involved in selecting the Dean of the College of Polymer Science and Polymer Engineering in 1988. Dr. Isayev’s commitment to academic excellence is further demonstrated through his participation in various committees, such as the Graduate Admission Committee, College Appeal Committee, Faculty Senate, Campus Facilities and Planning Committee, University Planning and Budget Committee, College Promotion and Tenure Committee, Search Committee for Director of Research and Sponsored Program, Student Policy Committee, and University Distinguished Professor Committee, where he contributed to the enhancement of the university’s academic and research endeavors.

Ashish Meeruty | Materials science | Excellence in Research

Mr. Ashish Meeruty | Materials science | Excellence in Research

Department: Civil Engineering, PhD, Research Scholar,  Parul University, India

Mr. Ashish Meeruty is a dedicated professional with a passion for education and leadership. With a strong background in academic administration, he has been instrumental in fostering a culture of excellence at Parul University. His commitment to the growth and development of students is evident in his proactive approach to enhancing the learning environment. Mr. Meeruty’s leadership style is characterized by his ability to inspire and motivate others, resulting in a highly motivated team that is focused on achieving the university’s goals. His strategic vision and innovative ideas have played a key role in shaping the university’s future direction. As a leader, Mr. Meeruty is known for his integrity, empathy, and commitment to academic excellence, making him a respected figure within the university community and beyond.

 

Professional Profiles:

 

Education:

Mr. Ashish Meeruty is currently pursuing a Ph.D. in Structural Engineering at Parul University, a journey he embarked upon in December 2019 with an expected completion date of January 2024. His academic journey has been marked by notable achievements, including the completion of an M. Tech in Structural Design from Sri Satya Sai University, Sehore (M.P) in December 2016, where he secured a first-class distinction with an impressive 80.00% score. Prior to his postgraduate studies, Mr. Meeruty earned a B.E. in Civil Engineering from Parul Institute of Engineering & Technology, affiliated with GTU, in June 2013, achieving a first-class distinction with a score of 63.10%. His academic background reflects a strong foundation in civil engineering, particularly in the area of structural design, showcasing his dedication to academic excellence and his commitment to the field of engineering.

 

Experience:

Mr. Ashish Meeruty has a diverse professional background that spans academia and the corporate sector. His journey began as a Lecturer at Parul Institute of Engineering & Technology, Waghodia, Limda PO, Vadodara, where he worked from June 2013 to 2017, contributing to the educational development of students. Building on his experience, he then transitioned to the role of Assistant Professor at the same institute, where he continued to make significant contributions to academic growth from January 2018 to August 2020. Currently, Mr. Meeruty serves as the Manager Civil at Rail Vikas Nigam Ltd. PIU. Vadodara, where he has been utilizing his expertise and leadership skills since August 2020, demonstrating his adaptability and dedication to both the academic and corporate realms.

Achievements::

Mr. Ashish Meeruty has been the recipient of several prestigious awards and accolades, underscoring his outstanding contributions and accomplishments. Notably, in 2019-20, he was recognized as the Best Faculty, a testament to his excellence in teaching. His research acumen was acknowledged with the Best Paper and Best Presenter awards at the International Conference 2020 in Pandharpur, showcasing his expertise and presentation skills. Mr. Meeruty’s commitment to research was further validated with the Research Promotion Award in 2020 and 2022, highlighting his significant contributions to the field. Furthermore, his guidance and mentorship were acknowledged when a student under his supervision was awarded the Best Thesis Award in 2022. His professional excellence extends beyond academia, as evidenced by the RVNL Group Award for the year 2020-21 and the Navratna Incentive at Rail Vikas Nigam Ltd. in October 2023, recognizing his exceptional performance and dedication. Additionally, Mr. Meeruty’s achievements include clearing the ISO Auditor Exam and being nominated as an ISO Auditor, demonstrating his expertise in quality management systems. Most recently, he was honored with the “Special Incentive Award” at Rail Vikas Nigam Ltd. on November 1, 2023, further highlighting his continued success and contributions to his field.

Current Organization Work Profile:

Mr. Ashish Meeruty has played a pivotal role in managing site activities for several significant projects, including the NRTI work in Vadodara, Dabhoi PEB Work, and Surat Metro work Depot Work. His responsibilities have extended to tender works, variation of items, and the meticulous preparation of Bills of Quantities (BOQ) for a range of projects, demonstrating his expertise in project management and procurement. Additionally, Mr. Meeruty has been actively involved in technical reviewing, design, drawings, and other critical details essential for both ongoing and future engineering infrastructural works. His multifaceted involvement showcases his comprehensive understanding of the intricacies involved in infrastructure development and his ability to contribute significantly to complex projects.

Membership Professional Body /Association

Mr. Ashish Meeruty is an active member of various esteemed professional organizations, demonstrating his dedication to professional growth and development. As a Life Member of the Institution of Engineers India (AM -1810890), he is affiliated with a prominent engineering institution, showcasing his commitment to the engineering profession. Furthermore, his membership in the American Institute of Concrete (ACI) as a Life Member with the membership number 01596697 highlights his engagement with international standards and practices in concrete technology. Additionally, Mr. Meeruty is a Chartered Engineer (AM-1810890) as a Life Member, further emphasizing his professional standing and expertise in the field. His membership in the Indian Society of Remote Sensing underscores his interest and involvement in remote sensing technologies. Moreover, as a member of the American Society for Civil Engineers (ASCE) and the ICMAI for registered Valuers Organisation for Land & Building, he demonstrates his commitment to staying updated with the latest trends and developments in civil engineering and valuation practices. These memberships collectively reflect Mr. Meeruty’s active engagement and continuous efforts to contribute to the advancement of his profession.

Publications Top Notes:

1. Analysis of Bridge Deck Slab Using Code Provisions of Irc6- 2014 by Grillage Analogy Method Indian Journal of Applied Research 2017 ISSN 2249-555X

2. Smart Village: Soul of Developing India International conference on Clean technologies and sustainable development, NITTR- Chitkara university Chandigarh India 23rd -24th Feb 2018

3. Smart Materials for Sustainable and Smart Infrastructure International Conference on Recent Advances in Materials & Manufacturing Technologies: Challenges & Opportunities (ICRAMMT) 19-20 Nov 2018 IOP science series, Scopus indexed

4. Handling and Utilization of Fly ash from thermal power plants 8th IconSWM 2018: 8th International Conference on Sustainable Waste Management November 22-24, 2018 Circular, Economy and Flyash Management, Pg 1-11, 2020

5. Green Buildings Versus Conventional Buildings International Conference on Urban Sustainability Emerging Trends, Themes, Concepts & Practices ICUS-2018, Malaviya National Institute Of Technology, Jaipur, 16th – 18th March 2018 ISBN: 978-93- 86238-48-1

Dr T V Vimalkumar | Solid State Physics | Best Extension Activity Award

Dr. T V Vimalkumar | Solid State Physics| Best Extension Activity Award

Dr. T. V. Vimal kumar, Department of Physics at St. Thomas College (Autonomous) in Thrissur, Kerala

 

Dr. T. V. Vimalkumar is a distinguished faculty member in the Department of Physics at St. Thomas College (Autonomous) in Thrissur, Kerala. With his extensive knowledge and experience in the field of physics, he has been an invaluable asset to the institution. Dr. Vimalkumar is known for his passion for teaching and his ability to make complex concepts understandable to students. He is dedicated to fostering a stimulating learning environment where students can develop a deep understanding of physics principles and their practical applications. His commitment to research and academic excellence has contributed significantly to the academic and research endeavors of the department. Dr. Vimalkumar’s expertise and guidance have inspired numerous students to pursue careers in physics and related fields, making him a respected figure in the academic community.

 

Professional Profiles:

 

Education:

Dr. T. V. Vimalkumar completed his PhD in Physics with a specialization in thin film materials for Photovoltaic applications from Cochin University of Science and Technology, Cochin, Kerala, India, spanning from 2006 to 2011. Prior to his doctoral studies, he pursued his Master of Science in Physics at St. Thomas College, Thrissur, under the University of Calicut, Kerala, from 2002 to 2004. His academic journey began with a Bachelor of Science in Physics from St. Thomas College, Thrissur, also under the University of Calicut, Kerala, from 1999 to 2002.

 

Research Experience:

With over 18 years of dedicated research experience, I have honed my expertise in the processing and characterization of chalcopyrite-based thin film solar cells, utilizing a range of physical and chemical methods. My proficiency extends to the preparation of semiconducting thin films through various techniques such as Chemical Bath Deposition (CBD), Chemical Spray Pyrolysis (CSP), Successive Ionic Layer Adsorption and Reaction (SILAR), Vacuum Evaporation, Spin coating, Evaporation, Sputtering, Pulsed Laser Deposition (PLD), Electron Beam gun, and Pulsed Electron Deposition (PED). Additionally, I possess hands-on experience in maintaining high vacuum pumps and utilizing advanced analytical instruments including X-Ray Diffractometer (Rigaku (D.Max.C)), UV-Vis-NIR Spectrophotometer (Jasco-V-570 and Hitachi U-3410), Stylus Profiler (Dektak 6M), Electron Microscope, Source Measure Unit (SMU- Keithly 236), Photoluminescence Set up, Atomic Force Microscopy (AFM), and Solar Simulator. My knowledge also encompasses the analysis of various characterization techniques such as X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of X-rays (EDAX), Hall Measurement Set up, Photoluminescence Spectroscopy (PL), Thermally Stimulated Current Measurements (TSC), and Photoconductivity studies. Furthermore, I have provided valuable project assistance to MSc and MPhil students, contributed to the design and fabrication of solar concentrators, air heaters, greenhouses, and dryers for industrial applications, and demonstrated proficiency in writing successful research project proposals for renowned funding agencies such as MNRE, DST, and CSIR-UGC. Additionally, I have organized International and National seminars (IC-SOLACE-2008, Cochin Nano- 2008 & 2011, NHTEP – 2007), showcasing my ability to lead and coordinate impactful scientific events.

Research Interest:

Thin- Film solar cells; Transparent conducting Oxides (TCO); Semiconductor thin films; Photovoltaic materials (Absorber and Buffer layers); Nano materials; Solar Thermal Energy

Award and Honor:

As a committed advocate for sustainable energy and education, I have served as a core member of the Net Zero Carbon Campaign under the Navakerala Karma Padhathi -II program by the Government of Kerala. In addition, I have held the position of Program Coordinator for the Urjja Kiran Program in various locations, including Nattika, Pudukkad, Irinjalakuda, Chalakudy, Ollur, and Manaloor, as part of the Power Department of the Government of Kerala. My contributions have extended to programs such as LIFE for Urjja Samrakshan and the Smart Energy Program, where I served as the District Coordinator for the Energy Management Centre in Thrissur. Furthermore, I have been involved in state-level science activities as the State Coordinator for initiatives by the State Institute of Educational Technology (SIET) under the General Education Department of the Government of Kerala. My dedication to education has also led me to be selected as a member of the teachers’ group for the International Physics Olympiad initiated by the Homi Bhabha Centre for Science Education, TIFR, Mumbai. Moreover, my expertise has been recognized through prestigious fellowships such as the Builders Educator in Science Technology and Mathematics (BESTM) Teacher Fellowship and the ICTP-UNESCO-IAEA International Research Fellowship. I have also contributed to the academic and research landscape as a member of the FLAIR state team, recognized as a Research Guide in Physics at the Research Centre, St. Thomas College Thrissur, and served as an external PhD viva voce examiner at Coimbatore Institute of Technology, Anna University, Coimbatore, Tamil Nadu.

Teaching Experience:

10 year of teaching experiences.
Subject handled- Nanotechnology, Experimental Technique, Spectroscopy, Electrodynamics, Mechanics and Electrodynamics, Mathematical Physics .

Member of Board Associations:

Life Member of Solar Energy Society of India
Life Member of Susthira Paliative Care Society , Pudukad .
Life Member of Academy of Physics Teachers ,Kerala .
Technical Committee Member – Navakerala Karma Padhathi – Net Zero Carbon – Public Campaign, Govt of Kerala.
Community Practice Member of Knowledge Economy Mission ,KDISC ,Kerala.
Jury Member of Agrihackthon 2020 Initiated by Agriculture Department .
Block Level Nodal Officer of National Education Policy,Cherpu Block , Thrissur
Expert committee for digitalization of School teaching content of State Institute or Education and Technology ( SIET ) Trivandrum
Technical Committee of Vinjan Sagar – Science and Technology Park , Thrissur Initiated by District Panchayath , Thrissur
Member of Board studies, Physics & Electronics St.Thomas College Thrissur

Publications Top Notes:

1)Anitha T.V., Gadha Menon K., Keerthana Venugopal, Vimalkumar T.V.* Investigating the role of film thickness on the physical properties of sol-gel coated CuO thin films: Discussing its potentiality in optoelectronic applications, Material Science And Engineering B

 

2)Thekkethil Venugopalan Anitha, Thottapurath Vijayan Vimalkumar, Anna Heba Chakkunny, B. Salameh, A. M. Alsmadi, and M. Matha, AIP Conference Proceedings 2244, 110002 (2020); https://doi.org/10.1063/5.0009137 Published Online: 26 June 2020

3) Massimo Mazzer , Stefano Rampino, Vimalkumar Thottapurath Vijayan , Mauro Lomascolo and Edmondo Gilioli Progress on Low-Temperature Pulsed Electron Deposition of CuInGaSe2 Solar Cells ,Energies 2016, 9, 207.1SSN-1996-1073.

4) Nisha R, K.N. Madhusoodhanan, T.V.Vimalkumar, K. P.Vijayakumar, “Gas Sensing application of nanocrystalline ZnO thin film prepared by spray pyrolysis”, Bulletin of Material Science , Vol-38, No-3 (2015) 1-9-ISSN-0973-7669.

5) Lakshmy K, Rincy E.B, Jithu Michael , T.V.Vimalkumar, “Optoelectronic properties of Zn- doped and air – annealed CdS thin film for photovoltaic applications” , International Research Journal of Engineering And Technology , Vol-2 ( 2015) 437- 441-ISSN-2395-0056.

Prof Dr Qiao Hu | Bio-Mechanics | Best Researcher Award

Prof Dr Qiao Hu ; Leading Researcher in Bio-Mechanics

Professor Dr. Qiao Hu is a distinguished faculty member at the School of Mechanical Engineering at Xi’an Jiaotong University. With a rich academic background and extensive experience in the field, Dr. Hu is known for his contributions to mechanical engineering. His research interests encompass a wide range of topics within the discipline, including but not limited to advanced manufacturing, materials engineering, and mechanical design. Dr. Hu is recognized for his expertise in these areas and has been involved in various research projects and academic endeavors aimed at advancing the field of mechanical engineering. As a respected figure in his field, Dr. Hu is dedicated to both teaching and research, making significant contributions to the academic community at Xi’an Jiaotong University.

Professional Profiles:

Education:

Professor Dr. Qiao Hu has been a Professor at Xi’an Jiaotong University since June 2017, where he contributes to the university’s academic and research activities. Prior to this role, he served as a Research Fellow at Xi’an Precision Machinery Research Institute from September 2008 to June 2017, where he was involved in cutting-edge research projects related to precision machinery. Before that, Dr. Hu worked as a Postdoctoral Researcher at Northwestern Polytechnical University from September 2006 to September 2008, honing his research skills and expertise in his field. His academic journey began with a Ph.D. at Xi’an Jiaotong University, where he pursued his doctoral studies from September 2001 to May 2006, focusing on advancing his knowledge in mechanical engineering. Dr. Hu’s academic and professional journey started with his undergraduate studies at Chang’an University, where he obtained his Bachelor’s degree in Mechanical Engineering from September 1997 to July 2001, laying the foundation for his successful career in the field.

 

Research Interest:

Underwater bionic robotic fish,
Underwater unmanned vehicle,
Soft bodied robots,
Underwater multi-field information perception.

Publications and Top Noted: