Sergios Villette | Mechanical Engineering | Best Researcher Award

Mr. Sergios Villette | Mechanical Engineering | Best Researcher Award

MEng, PhD Candidate Researcher, LTT/NTUA, Greece

Alexandros Alexiou is a mechanical engineer and researcher specializing in sustainable aviation fuel technologies and aeroengine combustion modeling. He is currently pursuing a Ph.D. in Mechanical Engineering at the National Technical University of Athens (NTUA), focusing on the experimental evaluation and modeling of alternative fuels in aircraft engines. His research involves aeroengine combustion chamber modeling, uncertainty quantification in aerodynamics, and innovative propulsion systems. Alexandros has collaborated on major projects with industry leaders such as SAFRAN Group and HELPE Group. With expertise in CFD simulations, mechanical design, and programming, he has contributed to the advancement of bio-kerosene utilization and non-conventional combustion. He has published in peer-reviewed journals, including Aerospace, where his work was featured on the journal cover. In addition to his research, he has experience as a tutor, robotics teacher, and machinist, demonstrating his diverse technical and academic expertise.

Profile.

orcid

Education

Alexandros Alexiou is currently pursuing a Ph.D. in Mechanical Engineering at the National Technical University of Athens (NTUA), focusing on sustainable aviation fuel technologies in aircraft propulsion systems. His doctoral research is funded by NTUA’s Special Account for Research Grants Scholarship. He holds a Master’s & Bachelor’s Degree in Mechanical Engineering from NTUA, specializing in Air and Ground Transfer Vehicles, with a GPA of 7.8/10. During his undergraduate studies, he conducted a diploma thesis on aerodynamic uncertainty quantification at the Parallel CFD & Optimization Unit (PCOpt) of LTT/NTUA, utilizing OpenFOAM and in-house codes. He completed his high school education at the 2nd General Lyceum of Corfu, achieving a GPA of 19.3/20. His strong academic foundation in aerodynamics, propulsion, and computational simulations has prepared him for cutting-edge research in aviation fuels, energy efficiency, and combustion modeling.

Experience 

Alexandros Alexiou is a Research Associate at the Laboratory of Thermal Turbomachines (LTT), NTUA, specializing in aeroengine combustion modeling and alternative fuel technologies. His research includes developing PROOSIS models for water evaporation and hydrogen combustion in collaboration with SAFRAN Group. He has also worked on the Lipid4fuel project, investigating bio-kerosene use in aircraft engines. Beyond research, Alexandros has diverse professional experience. He worked as a freelance tutor for engineering courses, a STEM/robotics teacher for primary school students, and a restaurant waiter during summer seasons. His technical background includes hands-on experience as a welder-machinist at Machine Shop L. Zorbas, gaining practical skills in mechanical fabrication. His expertise in CFD simulations, mechanical design, and programming allows him to contribute effectively to the advancement of sustainable aviation fuels and innovative propulsion systems. His interdisciplinary approach bridges engineering theory and practical applications in aviation and energy research.

Awards & Honors 

Alexandros Alexiou has received multiple prestigious awards in science and engineering competitions. In 2015, he was honored by the Association of Greek Chemists for his outstanding performance in the 29th National Chemistry Competition, securing an 85/100 score. In 2015, he placed 20th in the “Aristotle” National Physics Competition, earning recognition from the Association of Greek Physicists. He also received an award from the Hellenic Mathematical Society for his success in the “Thalis” National Mathematical Competition in 2014, showcasing his analytical and problem-solving skills. In addition to academic awards, he holds a DALF C2 certification in French from the Ministère de l’Éducation Nationale de la République Française and a Certificate of Proficiency in English (CPE) from the University of Cambridge, demonstrating bilingual proficiency. His achievements reflect a strong foundation in STEM disciplines, positioning him as a rising expert in mechanical engineering and aviation research.

Research Focus 

Alexandros Alexiou’s research focuses on sustainable aviation fuel technologies, aeroengine combustion modeling, and uncertainty quantification in aerodynamics. His Ph.D. work at NTUA involves experimental evaluation and modeling of biofuels and hydrogen-based propulsion systems, aiming to develop eco-friendly alternatives to conventional jet fuels. He specializes in computational fluid dynamics (CFD), chemical reactor networks, and non-intrusive uncertainty quantification for optimizing aircraft engine performance and emissions reduction. His expertise extends to hydrogen combustion modeling, bio-kerosene integration, and advanced propulsion systems. Alexandros has actively contributed to industry-driven projects, including SAFRAN’s PROOSIS modeling for hydrogen combustion and the Lipid4fuel project, a collaborative effort to assess bio-kerosene applications in aviation. His research integrates simulation tools such as OpenFOAM, ANSYS, and Cantera with experimental testing and industrial collaboration, driving innovation in green aviation technologies. His work aims to shape the future of sustainable air transportation and next-generation propulsion systems.

Publications

 

📖 Villette S, Adam D, Alexiou A, Aretakis N, Mathioudakis K. A Simplified Chemical Reactor Network Approach for Aeroengine Combustion Chamber Modeling and Preliminary Design. Aerospace. 2024; 11(1):22. 🔗 DOI (🌟 Journal Cover Feature)

📜 Diploma Thesis: Non-intrusive Polynomial Chaos Expansion for Aerodynamic Uncertainty Quantification & Robust Design with Manufacturing Uncertainties. Advisor: K. C. Giannakoglou, NTUA (2022).

Conclusion

The candidate demonstrates exceptional research potential in mechanical engineering and sustainable aviation fuels, making them a strong contender for the Best Researcher Award. Their work in combustion chamber modeling, bio-kerosene usage, and computational mechanics aligns with cutting-edge research trends.

Farzad Ghafoorian | Fluid Mechanic | Best Researcher Award

Dr. Farzad Ghafoorian | Fluid Mechanic | Best Researcher Award

Research Assistant, University of Colorado Colorado Springs, United States

A highly skilled mechanical engineer specializing in computational fluid dynamics (CFD), wind energy, and heat transfer 🌬️🔥. Holds a Master’s in Mechanical Engineering (Thermal-Fluid Science) from Iran University of Science and Technology 🎓. Passionate about renewable energy systems, numerical modeling, and fluid mechanics. Active researcher, guest editor, and journal reviewer 📖. Expertise in CFD simulations, wind turbine optimization, and thermal management 🏗️. Dedicated educator and workshop presenter for university and high school students 📚.

Profile

Education 📚

Iran University of Science and Technology – Master’s in Mechanical Engineering (Thermal-Fluid Science) (2018–2021) 🎓 | Thesis: Simulation & validation of Gorlov wind turbine 🌀 | GPA: 3.3/4 📊 Islamic Azad University South Tehran Branch – Bachelor’s in Mechanical Engineering (2013–2018) 🏗️ | GPA: 3.3/4 📈

Experience 🛠️

Independent Researcher (2021–Present) 🔬 | Published ISI research papers on CFD & wind energy 🌍 Teaching Assistant – Iran University of Science & Technology (2020–2021) 🎓 | Assisted in Fluid Mechanics I & II 💧 Workshop Presenter (2021–Present) 🎤 | Taught fluid mechanics, heat transfer, and CFD to undergraduates ⚡ High School Educator (2014–Present) 📖 | Conducted lessons in math, geometry, and physics 📏

Awards & Honors 🏆

Guest Editor – Next Energy Journal (Elsevier) (2024–Present) 📚 | Leading special issue on renewable energy modeling 🌿 Journal Reviewer (2024–Present) 📝 | Reviewer for Physics of Fluids, Energy, and Ocean Engineering journals 🏗️

Research Focus 🔍

Expert in Computational Fluid Dynamics (CFD), wind energy, and heat transfer ⚙️ | Specializes in 2D & 3D simulations of wind turbines (Darrieus, Savonius, Gorlov) 🌪️ | Works on heat transfer enhancement using porous media, phase change materials (PCM), nanofluids, and VOF simulation 🔥 | Dedicated to improving efficiency in renewable energy systems through numerical modeling 📊

Publications

An investigation into the self-starting of Darrieus-Savonius hybrid wind turbine and performance enhancement through innovative deflectors: A CFD approach

CFD investigation and optimization on the aerodynamic performance of a Savonius vertical axis wind turbine and its installation in a hybrid power supply system: a case study in …

Effective parameters optimization of a small scale Gorlov wind turbine, using CFD method

A 3D study of the darrieus wind turbine with auxiliary blades and economic analysis based on an optimal design from a parametric investigation

Numerical study on aerodynamic performance improvement and efficiency enhancement of the savonius vertical axis wind turbine with semi-directional airfoil guide vane

Conclusion

The researcher has an impressive portfolio in CFD-based wind energy research, with numerous impactful publications, editorial contributions, and technical expertise. Their work on Darrieus-Savonius hybrid wind turbines and heat transfer modeling demonstrates innovation and scientific rigor. While the research contributions are strong, securing a Ph.D., increasing international collaborations, and engaging in global conferences would further solidify their candidacy for the Best Researcher Award.

Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

Prof. Dr. Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

professor, University of Silesia, Katowice, China

Prof. Dr. Julian Plewa is a distinguished materials scientist with expertise in metallurgy, nanotechnology, and optical materials. With a career spanning over five decades, he has held academic and research positions at leading institutions in Poland and Germany. His contributions to high-temperature superconductors, thermoelectrics, and mechanical metamaterials have advanced the field of materials science. Currently a professor at the University of Silesia, he continues to pioneer innovations in functional materials and optical materials.

Profile

orcid

Education 🎓

Master of Science in Metallurgy – AGH University of Science and Technology, Cracow, 1973 Doctor of Philosophy in Technical Sciences – AGH University of Science and Technology, 1979 Habilitated Doctor in Materials Science – Silesia University of Technology, Gliwice, 2005

Experience 🏫

Lecturer – Silesia University of Technology (1981–1988) Teaching Assistant – University of Applied Sciences Muenster (2010–2017)  Visiting Professor – Cracow University of Technology (1995–2017) Professor – University of Silesia (2019–present)

Awards & Honors 🏆

Recognized for contributions to non-ferrous metallurgy Honored for advancements in high-temperature superconductors Awarded for innovative research in thermoelectrics mAcknowledged for breakthroughs in optical materials and mechanical metamaterials

Research Focus 🔬

Non-ferrous metallurgy – Lead refining, zinc spraying Sustainable materials – Battery recycling, aluminum foil reuse Advanced materials – High-temperature superconductors, thermoelectrics Optical materials – Phosphors, specialty glass Mechanical metamaterials – Structural innovations and applications

Publications 📚

📄 Auxetic Structures & Mechanical Metamaterials
🔹 J. Plewa, M. Plonska, P. Lis, Investigation of Modified Auxetic Structures from Rigid Rotating Squares, Materials 15(2022) 2848

📄 Lanthanide & Glass Crystallization
🔹 J. Plewa et al., Crystallization of Lanthanide—Ho³⁺ and Tm³⁺ Ions Doped Tellurite Glasses, Materials 15(2022) 2662
🔹 M. Płońska, J. Plewa, Crystallization of GeO₂-Al₂O₃-Bi₂O₃ Glasses, Crystals 10(2020) 522

📄 Optical & Luminescent Materials
🔹 J. Plewa et al., Partial Crystallization of Er³⁺/Yb³⁺ Co-Doped Oxyfluoride Glass, Materials Engineering 39(2018) 204
🔹 T. Dierkes, J. Plewa et al., From Metals to Nitrides – Rare Earth Binary Systems, J. Alloys & Compounds 693(2017) 291
🔹 A. Katelnikovas, J. Plewa et al., Yellow Emitting Garnet Phosphors for pcLEDs, J. Luminescence 136(2013) 17
🔹 J. Plewa, T. Jüstel, Pr³⁺ Doped UV Emitting Luminescent Ceramics, Materials Science Forum 636-637(2010) 344

📄 Superconductors & Thermoelectric Materials
🔹 J. Plewa et al., Preparation & Characterization of Calcium Cobaltite for Thermoelectric Applications, Eur. Ceramic Society 25(2005) 1997
🔹 J. Plewa et al., Superconducting Materials for Electronic Applications, Physica C 372-376(2002) 1046
🔹 K. Itoh, J. Plewa et al., RF Magnetic Shielding Effect of a Sealed Bottom Cylinder, Applied Superconductivity Conf. Proc. (2000)

Conclusion 🎯

This researcher is highly suitable for the Research Visionary in Materials Mechanics Award, given their long-standing impact on materials science, mechanical metamaterials, and sustainable material innovation. By expanding industry collaboration, integrating computational mechanics, and increasing patent applications, their contributions could reach even greater heights in the field of materials mechanics. 🚀

 

Ms. Ayushi Thakur | Mechanical Engineering | Excellence in Research

Ms. Ayushi Thakur | Mechanical Engineering | Excellence in Research

Ms. Ayushi Thakur, Amity University, Greater noida, India

Ms. Ayushi Thakur distinguished academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

ORCID

Google scholar

Scopus

👩‍🏫 Academic Profile 📚

Fields of Research Interest 🚀

Additive Manufacturing: Fused Deposition Modelling, 4D PrintingSmart Materials: Biomimetic Materials, Shape Memory Polymers and Alloys, Self-Healing Materials, Engineering Applications of Smart Materials

Educational Degrees 🎓

PhD: Department of Mechanical Engineering, Amity University, NoidaThesis: Experimental Investigation of Fused Deposited Shape Memory Polymer for Biomedical Applications (Pursuing – currently in 9th Semester)M. Tech: Department of Mechanical Engineering, IIMT Greater Noida, U.P.T.U. Lucknow, 2017, 74%B. Tech: Dehradun Institute of Technology, Dehradun, U.P.T.U. Lucknow, 2006, 75% (Honors)

Present Position 👩‍🏫

Assistant Professor: Department of Mechanical Engineering, Amity University, Greater Noida 201310 (July 2018 – Till Date)

Academic Experience 🏫

Assistant Professor: Department of Mechanical Engineering, Amity University, Greater Noida 201310 (July 2018 – Till Date)Technical Trainer: NTTF, Bangalore, (for Client Maruti Ltd.) (Dec 2017- April 2018)Senior Lecturer: Department of Mechanical Engineering, DIT School of Engineering, Greater Noida 201310 (July 2011 – Dec 2013)Lecturer: Department of Mechanical Engineering, GNIT Greater Noida, 201310, (July 2009- June 2011)

Industry Experience 🏢

Software Engineer: Satyam Mahindra, Support projects for Client Caterpillar, MARS & American Expresses on IBM Lotus notes. (July 2006- Dec 2008)

Copyright 📜

“Touch” as the stimuli for stimuli-responsive materials, by Ayushi Thakur, Aditi Dhama, and Dr. Ajay Rana. (Diary Number. 27777/2023-CO/L)

Workshops & Certificates 🛠️

Various workshops including Additive Manufacturing, IoT, 3D Printing, Robotic Welding.Certified in Applications of 3D Printing from the University of Illinois Urbana Campaign (online).Certified in AutoCAD from CADD CENTRE Delhi.Certified in Fusion 360 in CAD/FEM/CAM for beginners from Udemy.Certificate of participation in IP awareness/training program under the National Intellectual Property Awareness Mission.

Technical Skills 💻

AutoCADMinitab Statistical SoftwareFusion 360Research, Writing, Problem-solving, and Time management.

Membership & Personal Traits 🌐

Member of the International Association of Engineers.Member of AUTODESK Research Community.Excellent interpersonal, analytical, logical, and mathematical skills.Excellent communication skills in verbal and written.Good listener and keen learner.Adaptable nature according to the environment.

📊 Citation Metrics (Google Scholar):

Citations by: All – 60, Since 2018 – 60

h-index: All – 4, Since 2018 – 4

i10 index: All – 3, Since 2018 – 3