Professor at Dalian Polytechnic University , China
π Dr. Xuejie Gao is an Associate Professor at Dalian Polytechnic University, specializing in 3D printing for lithium-ion and solid-state batteries. π Holding a Ph.D. in Mechanical and Material Engineering from Western University, she leads innovative battery technology research. π Her work focuses on sustainable energy solutions, advancing energy storage efficiency. βοΈ Dr. Gao has authored high-impact publications in top-tier journals like Advanced Materials and Energy Storage Materials. π She collaborates with academic and industrial leaders, driving breakthroughs in next-generation battery technologies.
Publication Profile
scopus
Educationπ
Dr. Xuejie Gao earned her Ph.D. in Mechanical and Material Engineering from Western University, where she focused on 3D printing applications in battery development. π§ͺ Her research emphasized transitioning from liquid to solid-state batteries to improve energy efficiency. π Dr. Gao completed her undergraduate and masterβs studies in Material Science, laying the foundation for her advanced research in sustainable energy storage. π± She received multiple scholarships during her academic journey, highlighting her dedication and exceptional performance in material engineering and energy applications.
Experienceπ©βπ«Β
Dr. Gao serves as an Associate Professor at Dalian Polytechnic University, engaging in cutting-edge research and teaching. π‘ She has led six ongoing projects and successfully completed three, emphasizing battery innovation. βοΈ Dr. Gao collaborates with the industry, contributing to two sponsored projects involving battery manufacturing advancements. π Her expertise extends to guiding Ph.D. students and acting as a Youth Editorial Board member for Renewables and eScience. π Dr. Gao bridges academia and industry, fostering advancements in sustainable battery technologies.
Awards and HonorsπΒ
Dr. Gao has received accolades for her pioneering work in battery technology. π She is a CTAPI Fellow, recognized for her contributions to energy storage and advanced materials. π Dr. Gaoβs publications in high-impact journals reflect her leadership in the field. π§βπ¬ Her patents in process further cement her innovative contributions. π As a member of editorial boards and industry collaborations, Dr. Gao’s influence extends across academic and commercial sectors. πΌ Her role in shaping the next generation of batteries has garnered widespread recognition.
Research Focusπ¬Β
Dr. Gao’s research targets the development of 3D-printed lithium-ion and solid-state batteries. β‘ Her focus lies in enhancing battery performance, reducing manufacturing costs, and fostering sustainability. 𧩠Key areas include material development, advanced fabrication techniques, and energy efficiency improvements. π Collaborating with Shanghai Carbon Industrial Co., she applies her findings to real-world applications. π Dr. Gaoβs innovations aim to transform industries such as electric vehicles and renewable energy storage. π Her interdisciplinary approach integrates material science, engineering, and energy technologies.
Publications π
“Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries” (2025): Focuses on improving the efficiency of lithium metal batteries by enhancing lithium salt dissociation and creating stable solid electrolyte interphases (SEI).
“Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries” (2024): This study introduces methods for rejuvenating dead lithium and suppressing lithium dendrites to improve the lifespan and safety of solid-state batteries.
“Carboxymethyl chitosan composited poly(ethylene oxide) electrolyte with high ion conductivity and interfacial stability for lithium metal batteries” (2024): Examines an electrolyte composite that enhances ion conductivity and stability, crucial for improving the performance and longevity of lithium metal batteries.
“Natural biopolymers derived kinematic and self-healing hydrogel coatings to continuously protect metallic zinc anodes” (2024): Investigates self-healing hydrogel coatings that protect zinc anodes in batteries, enhancing their stability and lifespan.
“Phosphotungstic acid decorated free-standing electrode accelerates polysulfides conversion for high-performance flexible LiβS batteries” (2024): Introduces a novel electrode material that accelerates the conversion of polysulfides, improving the performance of lithium-sulfur (Li-S) batteries.
“All-in-one Janus covalent organic frameworks separator as fast Li nucleator and polysulfides catalyzer in lithium-sulfur batteries” (2024): This research presents a separator made of covalent organic frameworks that acts as both a lithium nucleator and a catalyst for polysulfides in Li-S batteries.
“ZIF-67-Derived Flexible Sulfur Cathode with Improved Redox Kinetics for High-Performance Li-S Batteries” (2024): Focuses on a new sulfur cathode derived from ZIF-67, which improves redox kinetics and enhances the performance of Li-S batteries.
“Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery” (2024): This study uses lignin-reinforced PVDF electrolyte to prevent dendrite formation, improving the performance of quasi-solid-state lithium metal batteries.
“Dual-single-atoms of PtβCo boost sulfur redox kinetics for ultrafast LiβS batteries” (2024): Highlights the use of Pt-Co single atoms to enhance sulfur redox kinetics, enabling faster and more efficient Li-S batteries.
“Ester-Enhanced Inorganic-Rich Solid Electrolyte Interphase Enabled Dendrite-Free Fast-Charging Lithium Metal Batteries” (2024): Focuses on creating a dendrite-free, fast-charging lithium metal battery by enhancing the solid electrolyte interphase with esters and inorganic materials.
Conclusion
Dr. Gao Xuejie’s expertise in advanced battery technologies, particularly her research on solid-state batteries and the application of 3D printing for energy storage, positions her as an exceptional candidate for the Best Researcher Award. Her continuous pursuit of innovation in the energy sector, along with her substantial academic achievements, makes her a standout researcher deserving of recognition in this category.