Mariam Darestani | Materials and Structures | Best Research Award

Dr. Mariam Darestani | Materials and Structures | Best Research Award

Senior Lecturer, Western Sydney University – Kingswood, NSW, Australia

Dr. Mariam Darestani is a Senior Lecturer at Western Sydney University, specializing in polymer engineering and sustainable materials. With a strong academic background and industry experience, she has established herself as a leading researcher in her fieldDr. Mariam Darestani has received numerous awards for her research excellence, industry collaboration, and teaching innovation. Her passion for STEM education and research has led to various leadership roles, including Academic Program Advisor and 21C STEM+ Capabilities Curriculum Champion.

Profile

scholar

🎓 Education

– Graduate Certificate in Academic Practice (GCAP), Queensland University of Technology, 2017-2019 📚– Doctor of Philosophy (Engineering), University of Sydney, 2008-2012 🎓– Master of Engineering (Polymer), Iran Polymer & Petrochemical Institute, 2000-2003 🌟– Bachelor of Engineering (Polymer) (Honours), Tehran Polytechnic University, 1996-2000 🌈

👨‍🔬 Experience

– Senior Lecturer, Western Sydney University, 2019-Present 📚– Advance Queensland Research Fellow, Queensland University of Technology, 2016-2020 🔍– Research Fellow, Queensland University of Technology, 2014-2016 🔬– Postdoctoral Research Fellow, University of Technology Sydney, 2013-2014 💡– Industry experience: Research and Development Engineer, INPHAZE Pty Ltd, 2011-2013 💻

🔍 Research Interest

Dr. Mariam Darestani’s research focuses on sustainable materials, polymer engineering, and environmental engineering. She explores innovative solutions for industrial applications, emphasizing sustainability and environmental impact. Her research has led to publications in reputable journals and collaborations with industry partners.

🏆Awards and Honors

– EDBE Research Impact Award, Western Sydney University, 2024 🏆– Researcher of the Year through Industry Partnership, 2023 💼– NSW Sustainability Award, 2022 🌿– ON Prime Innovation and Partnership Award, CSIRO, 2019 🔝– AMP Tomorrow Maker Award, 2018 💡– Amelia Earhart Fellowship Award, Zonta International, 2010

📚 Publications

– “Sustainable polymer-based materials for environmental applications” 🌿
– “Industrial applications of polymer nanocomposites” 💼
– “Environmental impact assessment of polymer-based materials” 📊
– “Process optimization for polymer manufacturing” 🔩
– “Polymer-based materials for water treatment”

Conclusion

The candidate is a highly accomplished researcher and academic, with a strong track record of research productivity, industry collaboration, and teaching excellence. With some focus on interdisciplinary research, international collaboration, and mentorship, the candidate is an excellent candidate for the Best Researcher Award. Their achievements and contributions to their field make them a strong contender for this recognition.

Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

Prof. Dr. Julian Plewa | mechanische Metamaterialien | Research Visionary in Materials Mechanics Award

professor, University of Silesia, Katowice, China

Prof. Dr. Julian Plewa is a distinguished materials scientist with expertise in metallurgy, nanotechnology, and optical materials. With a career spanning over five decades, he has held academic and research positions at leading institutions in Poland and Germany. His contributions to high-temperature superconductors, thermoelectrics, and mechanical metamaterials have advanced the field of materials science. Currently a professor at the University of Silesia, he continues to pioneer innovations in functional materials and optical materials.

Profile

orcid

Education 🎓

Master of Science in Metallurgy – AGH University of Science and Technology, Cracow, 1973 Doctor of Philosophy in Technical Sciences – AGH University of Science and Technology, 1979 Habilitated Doctor in Materials Science – Silesia University of Technology, Gliwice, 2005

Experience 🏫

Lecturer – Silesia University of Technology (1981–1988) Teaching Assistant – University of Applied Sciences Muenster (2010–2017)  Visiting Professor – Cracow University of Technology (1995–2017) Professor – University of Silesia (2019–present)

Awards & Honors 🏆

Recognized for contributions to non-ferrous metallurgy Honored for advancements in high-temperature superconductors Awarded for innovative research in thermoelectrics mAcknowledged for breakthroughs in optical materials and mechanical metamaterials

Research Focus 🔬

Non-ferrous metallurgy – Lead refining, zinc spraying Sustainable materials – Battery recycling, aluminum foil reuse Advanced materials – High-temperature superconductors, thermoelectrics Optical materials – Phosphors, specialty glass Mechanical metamaterials – Structural innovations and applications

Publications 📚

📄 Auxetic Structures & Mechanical Metamaterials
🔹 J. Plewa, M. Plonska, P. Lis, Investigation of Modified Auxetic Structures from Rigid Rotating Squares, Materials 15(2022) 2848

📄 Lanthanide & Glass Crystallization
🔹 J. Plewa et al., Crystallization of Lanthanide—Ho³⁺ and Tm³⁺ Ions Doped Tellurite Glasses, Materials 15(2022) 2662
🔹 M. Płońska, J. Plewa, Crystallization of GeO₂-Al₂O₃-Bi₂O₃ Glasses, Crystals 10(2020) 522

📄 Optical & Luminescent Materials
🔹 J. Plewa et al., Partial Crystallization of Er³⁺/Yb³⁺ Co-Doped Oxyfluoride Glass, Materials Engineering 39(2018) 204
🔹 T. Dierkes, J. Plewa et al., From Metals to Nitrides – Rare Earth Binary Systems, J. Alloys & Compounds 693(2017) 291
🔹 A. Katelnikovas, J. Plewa et al., Yellow Emitting Garnet Phosphors for pcLEDs, J. Luminescence 136(2013) 17
🔹 J. Plewa, T. Jüstel, Pr³⁺ Doped UV Emitting Luminescent Ceramics, Materials Science Forum 636-637(2010) 344

📄 Superconductors & Thermoelectric Materials
🔹 J. Plewa et al., Preparation & Characterization of Calcium Cobaltite for Thermoelectric Applications, Eur. Ceramic Society 25(2005) 1997
🔹 J. Plewa et al., Superconducting Materials for Electronic Applications, Physica C 372-376(2002) 1046
🔹 K. Itoh, J. Plewa et al., RF Magnetic Shielding Effect of a Sealed Bottom Cylinder, Applied Superconductivity Conf. Proc. (2000)

Conclusion 🎯

This researcher is highly suitable for the Research Visionary in Materials Mechanics Award, given their long-standing impact on materials science, mechanical metamaterials, and sustainable material innovation. By expanding industry collaboration, integrating computational mechanics, and increasing patent applications, their contributions could reach even greater heights in the field of materials mechanics. 🚀

 

Søren Taverniers | Mechanics of Functional Materials | Best Researcher Award

Dr. Søren Taverniers | Mechanics of Functional Materials | Best Researcher Award

Research Scientist at Stanford University, United States

Dr. Sorentav is a computational scientist specializing in energy science and engineering. With expertise in neural networks, physics-informed machine learning, and computational fluid dynamics, he has contributed significantly to advancing numerical modeling techniques. His research focuses on shock physics, subsurface flows, additive manufacturing, and uncertainty quantification. He has developed innovative computational frameworks for high-fidelity simulations and accelerated engineering applications. Dr. Sorentav has published in leading scientific journals, reviewed research papers, and supervised students and interns. His interdisciplinary approach bridges machine learning with physics-based simulations, enhancing predictive accuracy in various domains. He is proficient in multiple programming languages, including Python, C++, MATLAB, and OpenFOAM, and has a strong background in Unix/Linux environments. Through collaborations with academic institutions and industry, he has contributed to cutting-edge projects in materials science, energy systems, and computational mechanics.

Pofile

scholar

Education 

Dr. Sorentav holds a Ph.D. in Computational Science from the University of California, San Diego (UCSD), where he developed novel numerical techniques for solving complex physics-informed problems in energy and material sciences. His doctoral research focused on advancing simulation accuracy for multiphysics systems, particularly in shock-particle interactions and uncertainty quantification. Prior to his Ph.D., he earned a Master’s degree in Computational Science from UCSD, specializing in physics-informed neural networks and high-performance computing. He also holds a Bachelor’s degree from Katholieke Universiteit Leuven, where he built a solid foundation in applied mathematics, fluid dynamics, and numerical modeling. Throughout his academic career, Dr. Sorentav has received multiple awards for research excellence, including recognition for his Ph.D. dissertation. His education has equipped him with expertise in Monte Carlo simulations, finite difference/volume methods, and applied probability, which he integrates into cutting-edge computational science applications.

Experience

Dr. Sorentav has extensive experience in computational modeling, numerical methods, and physics-informed machine learning. He has worked on developing and validating high-fidelity simulations for energy applications, materials science, and shock physics. His research contributions include designing neural network architectures for scientific computing, implementing uncertainty quantification methods, and improving computational efficiency in large-scale simulations. Dr. Sorentav has collaborated with leading institutions, including Stanford University and UCSD, to accelerate computational model development for industrial and research applications. He has also contributed to proposal writing, conference presentations, and peer-reviewed journal publications. His technical expertise spans various software tools, including PyTorch, OpenFOAM, MATLAB, FEniCS, and Mathematica. Additionally, he has experience supervising student research projects, mentoring interns, and leading interdisciplinary teams. His work integrates applied probability, numerical analysis, and machine learning to address challenges in subsurface flows, additive manufacturing, and compressible fluid dynamics.

Publications

Graph-Informed Neural Networks & Machine Learning in Multiscale Physics

Graph-informed neural networks (GINNs) for multiscale physics ([J. Comput. Phys., 2021, 33 citations])

Mutual information for explainable deep learning in multiscale systems ([J. Comput. Phys., 2021, 15 citations])

Machine-learning-based multi-scale modeling for shock-particle interactions ([Bulletin of the APS, 2019, 1 citation])

These papers focus on integrating neural networks into multiscale physics, leveraging explainability techniques, and improving shock-particle simulations through ML.

2. Monte Carlo Methods & Uncertainty Quantification

Estimation of distributions via multilevel Monte Carlo with stratified sampling ([J. Comput. Phys., 2020, 32 citations])

Accelerated multilevel Monte Carlo with kernel-based smoothing and Latinized stratification ([Water Resour. Res., 2020, 19 citations])

Impact of parametric uncertainty on energy deposition in irradiated brain tumors ([J. Comput. Phys., 2017, 4 citations])

This work revolves around Monte Carlo methods, uncertainty quantification, and their applications in medical physics and complex simulations.

3. Stochastic & Hybrid Models in Nonlinear Systems

Noise propagation in hybrid models of nonlinear systems ([J. Comput. Phys., 2014, 16 citations])

Conservative tightly-coupled stochastic simulations in multiscale systems ([J. Comput. Phys., 2016, 9 citations])

A tightly-coupled domain decomposition approach for stochastic multiphysics ([J. Comput. Phys., 2017, 8 citations])

This research contributes to computational physics, specifically in stochastic and hybrid system modeling.

4. Computational Fluid Dynamics (CFD) & Shock-Wave Interactions

Two-way coupled Cloud-In-Cell modeling for non-isothermal particle-laden flows ([J. Comput. Phys., 2019, 7 citations])

Multi-scale simulation of shock waves and particle clouds ([Int. Symp. Shock Waves, 2019, 1 citation])

Inverse asymptotic treatment for capturing discontinuities in fluid flows ([J. Comput. Sci., 2023, 2 citations])

S. Taverniers has significantly contributed to shock-wave interaction modeling, with applications in aerodynamics and particle-fluid interactions.

5. Computational Plasma & Dielectric Breakdown Modeling

2D particle-in-cell modeling of dielectric insulator breakdown ([IEEE Conf. Plasma Science, 2009, 11 citations])

This early work focuses on plasma physics and dielectric breakdown simulations.

6. Nozzle Flow & Additive Manufacturing Simulations

Finite element methods for microfluidic nozzle oscillations ([arXiv, 2023])

Accelerating part-scale simulations in liquid metal jet additive manufacturing ([arXiv, 2022])

Modeling of liquid-gas meniscus dynamics in arbitrary nozzle geometries (US Patent, 2024)

Conclusion

Based on their remarkable academic achievements, innovative research, and ability to collaborate effectively across disciplines, this candidate is highly deserving of the Best Researcher Award. However, by broadening their industrial collaborations, increasing their research visibility, and considering the wider impact of their work, they could elevate their research contributions even further, making an even greater impact on both academia and industry.

 

Xuejie Gao | From Liquid to Solid | Women Researcher Award

Assoc. Prof. Dr Xuejie Gao | From Liquid to Solid | Women Researcher Award

Professor at Dalian Polytechnic University , China

🚀 Dr. Xuejie Gao is an Associate Professor at Dalian Polytechnic University, specializing in 3D printing for lithium-ion and solid-state batteries. 📚 Holding a Ph.D. in Mechanical and Material Engineering from Western University, she leads innovative battery technology research. 🔋 Her work focuses on sustainable energy solutions, advancing energy storage efficiency. ✍️ Dr. Gao has authored high-impact publications in top-tier journals like Advanced Materials and Energy Storage Materials. 🌍 She collaborates with academic and industrial leaders, driving breakthroughs in next-generation battery technologies.

Publication Profile

scopus

Education🎓

Dr. Xuejie Gao earned her Ph.D. in Mechanical and Material Engineering from Western University, where she focused on 3D printing applications in battery development. 🧪 Her research emphasized transitioning from liquid to solid-state batteries to improve energy efficiency. 📈 Dr. Gao completed her undergraduate and master’s studies in Material Science, laying the foundation for her advanced research in sustainable energy storage. 🌱 She received multiple scholarships during her academic journey, highlighting her dedication and exceptional performance in material engineering and energy applications.

Experience👩‍🏫 

Dr. Gao serves as an Associate Professor at Dalian Polytechnic University, engaging in cutting-edge research and teaching. 💡 She has led six ongoing projects and successfully completed three, emphasizing battery innovation. ⚙️ Dr. Gao collaborates with the industry, contributing to two sponsored projects involving battery manufacturing advancements. 🏭 Her expertise extends to guiding Ph.D. students and acting as a Youth Editorial Board member for Renewables and eScience. 🌏 Dr. Gao bridges academia and industry, fostering advancements in sustainable battery technologies.

Awards and Honors🏆 

Dr. Gao has received accolades for her pioneering work in battery technology. 🌟 She is a CTAPI Fellow, recognized for her contributions to energy storage and advanced materials. 📜 Dr. Gao’s publications in high-impact journals reflect her leadership in the field. 🧑‍🔬 Her patents in process further cement her innovative contributions. 🌍 As a member of editorial boards and industry collaborations, Dr. Gao’s influence extends across academic and commercial sectors. 💼 Her role in shaping the next generation of batteries has garnered widespread recognition.

Research Focus🔬 

Dr. Gao’s research targets the development of 3D-printed lithium-ion and solid-state batteries. ⚡ Her focus lies in enhancing battery performance, reducing manufacturing costs, and fostering sustainability. 🧩 Key areas include material development, advanced fabrication techniques, and energy efficiency improvements. 🏭 Collaborating with Shanghai Carbon Industrial Co., she applies her findings to real-world applications. 🚘 Dr. Gao’s innovations aim to transform industries such as electric vehicles and renewable energy storage. 📊 Her interdisciplinary approach integrates material science, engineering, and energy technologies.

Publications 📖

“Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries” (2025): Focuses on improving the efficiency of lithium metal batteries by enhancing lithium salt dissociation and creating stable solid electrolyte interphases (SEI).

“Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries” (2024): This study introduces methods for rejuvenating dead lithium and suppressing lithium dendrites to improve the lifespan and safety of solid-state batteries.

“Carboxymethyl chitosan composited poly(ethylene oxide) electrolyte with high ion conductivity and interfacial stability for lithium metal batteries” (2024): Examines an electrolyte composite that enhances ion conductivity and stability, crucial for improving the performance and longevity of lithium metal batteries.

“Natural biopolymers derived kinematic and self-healing hydrogel coatings to continuously protect metallic zinc anodes” (2024): Investigates self-healing hydrogel coatings that protect zinc anodes in batteries, enhancing their stability and lifespan.

“Phosphotungstic acid decorated free-standing electrode accelerates polysulfides conversion for high-performance flexible Li–S batteries” (2024): Introduces a novel electrode material that accelerates the conversion of polysulfides, improving the performance of lithium-sulfur (Li-S) batteries.

“All-in-one Janus covalent organic frameworks separator as fast Li nucleator and polysulfides catalyzer in lithium-sulfur batteries” (2024): This research presents a separator made of covalent organic frameworks that acts as both a lithium nucleator and a catalyst for polysulfides in Li-S batteries.

“ZIF-67-Derived Flexible Sulfur Cathode with Improved Redox Kinetics for High-Performance Li-S Batteries” (2024): Focuses on a new sulfur cathode derived from ZIF-67, which improves redox kinetics and enhances the performance of Li-S batteries.

“Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery” (2024): This study uses lignin-reinforced PVDF electrolyte to prevent dendrite formation, improving the performance of quasi-solid-state lithium metal batteries.

“Dual-single-atoms of Pt–Co boost sulfur redox kinetics for ultrafast Li–S batteries” (2024): Highlights the use of Pt-Co single atoms to enhance sulfur redox kinetics, enabling faster and more efficient Li-S batteries.

“Ester-Enhanced Inorganic-Rich Solid Electrolyte Interphase Enabled Dendrite-Free Fast-Charging Lithium Metal Batteries” (2024): Focuses on creating a dendrite-free, fast-charging lithium metal battery by enhancing the solid electrolyte interphase with esters and inorganic materials.

Conclusion

Dr. Gao Xuejie’s expertise in advanced battery technologies, particularly her research on solid-state batteries and the application of 3D printing for energy storage, positions her as an exceptional candidate for the Best Researcher Award. Her continuous pursuit of innovation in the energy sector, along with her substantial academic achievements, makes her a standout researcher deserving of recognition in this category.

Kaixi Shi | Two-dimensional materials | Best Researcher Award

Ms. Kaixi Shi | Two-dimensional materials | Best Researcher Award

lecturer at  Changchun University of Science and Technology, China

Chunde Piao is a distinguished researcher in the Department of Geological Engineering at the School of Resources and Geosciences, China University of Mining and Technology (CUMT). His expertise lies in coal mine geological engineering, focusing on health monitoring and stability analysis. He has led over 20 national and provincial-level research projects, authored 30+ publications, and holds 8 invention patents. His contributions to distributed fiber optic sensing technology have garnered him six prestigious awards, including the First Prize of the National Science and Technology Progress Award.

Professional Profiles:

scopus

🎓 Education

📜 Ph.D. in Geological Engineering, Nanjing University (2005-2008)🎓 M.S. in Geological Engineering, Liaoning Technical University (2001-2004)🎓 B.S. in Geological Engineering, Liaoning Technical University (1997-2001)

👨‍🔬 Experience

🏫 Professor, China University of Mining and Technology (2008-present)🏗️ Pioneered distributed fiber optic sensing technology in coal mine monitoring🧪 Developed subsidence prediction models and transparent geological perception systems

🏆 Awards and Honors

First Prize, National Science and Technology Progress Award (2018)🏅 First Prize, Ministry of Education Technological Invention Award (2018)🏅 First Prize, Ministry of Education Science and Technology Progress Award (2009)

🔍 Research Focus

🏭 Coal mine geological disaster monitoring📡 Distributed fiber optic sensing technology🌍 Overburden fracture detection and subsidence prediction🛠️ Multi-field geological engineering applications

✍️Publications Top Note :

Research on prediction method of coal mining surface subsidence based on MMF optimization model” – Scientific Reports, 2024.

“Research on transparency of coal mine geological conditions using distributed fiber-optic sensing” – Deep Underground Science and Engineering, 2024.

“Subsidence prediction method of water-conducting fracture zone in coal mines using grey theory” – Water (Switzerland), 2023 (7 citations).

“Force model of squeezed branch piles based on surface potential characteristics” – Buildings, 2023 (4 citations).

“Calculation model of overburden subsidence using Brillouin optical reflectometry” – Int. J. Rock Mechanics & Mining Sciences, 2021 (22 citations).

“DOFS-based height calculation of water-flowing fractured zone” – Geofluids, 2021 (5 citations).

“Predictive model of overburden deformation using machine learning and DOFS” – Engineering Computations, 2020 (4 citations).

“Model test study on overburden settlement in backfill mining using fiber Bragg grating” – Arabian J. Geosciences, 2019 (22 citations).

“Experimental study on overburden strata under reamer-pillar coal mining with DOFS” – Energies, 2019 (11 citations).

“Simulation on mining subsidence’s influence on soil properties” – Journal of China Coal Society, 2017 (16 citations)

Conclusion

Chunde Piao’s remarkable contributions to coal mine monitoring and geological engineering, coupled with his leadership in national projects and groundbreaking technological developments, make him an outstanding candidate for the Best Researcher Award. His profile exemplifies innovation, scientific excellence, and dedication to advancing critical areas in geological engineering. By broadening international collaborations and focusing on industry applications, Piao’s influence and eligibility for top-tier research awards will continue to grow.

Xin Ye | TiNi-based alloy additive manufacturing | Best Researcher Award

Dr. Xin Ye | TiNi-based alloy additive manufacturing | Best Researcher Award

Lecturer at  HElectric Power Electric Equipment Co., Ltd, China

🌟 Dr. Ye Xin, a distinguished lecturer and master tutor at the School of Materials Science and Engineering, Shanghai University of Engineering Science, specializes in superalloy welding, repair, and additive manufacturing. 📚 Holding a Ph.D. in Material Processing Engineering from Shanghai Jiao Tong University, he has made significant contributions to enterprise technical support and process optimization, earning recognition for his expertise in welding and remanufacturing technologies. 🌍

Professional Profiles:

orcid

Education 🎓

Ph.D. in Material Processing Engineering from Shanghai Jiao Tong University. 📘 International Welding Engineer Certification with expertise in arc and laser welding. 📗 Specialized in numerical simulation and optimization design for high-temperature alloy processing. 📕 Master Tutor and Technical Expert supporting academic and industry initiatives.

Experience 💼

Over 8 years as a lecturer and technical lead in superalloy welding. 🔬 Presided over 1 national experimental fund, 1 local research project, and contributed to 5 national initiatives. 🏗 Led or participated in 20+ consultancy and industrial projects, showcasing transformative innovation. ✍ Published 20+ peer-reviewed SCI and EI-indexed papers.

Awards and Honors 🏅

Recipient of prestigious national and provincial research grants. 🎖 Contributor to impactful collaborative projects in materials science. 🌟 Recognized for advancing high-temperature alloy repair technologies. 🎓 Celebrated for academic excellence and industry partnerships.

Research Focus 🔍

Superalloy welding, repair, and additive manufacturing. 📈 Advanced arc and laser welding for high-performance materials. 🔧 Numerical simulation to optimize material behavior and processing. 🔬 Developing cutting-edge technologies for industry innovation.

✍️Publications Top Note :

“Influence of Surface Pretreatment of Steel Substrate on the Interfacial Microstructure and Tensile Properties of Laser Al/Steel Joints”

Materials Letters (2024-12)

Focus: Investigates how surface treatments of steel substrates affect the microstructure and tensile strength in aluminum-steel laser joints.

DOI: 10.1016/j.matlet.2024.137523

“Study on Microstructure and Thermal Cracking Sensitivity of Deposited Ti6Al4V/Inconel 718 Composites Made by Two-Wire Arc Additive Manufacturing”

Materials (2024-12-06)

Focus: Explores the microstructure and cracking behavior of Ti6Al4V/Inconel 718 composites fabricated using two-wire arc additive manufacturing.

DOI: 10.3390/ma17235989

“The Differences in Bonding Properties and Electrical, Thermal Conductivity Between the Preferred Crystallographic Orientation Interface of Cu3Sn/Cu”

Surfaces and Interfaces (2024-03)

Focus: Studies the effects of crystallographic orientation on bonding and thermal/electrical properties at Cu3Sn/Cu interfaces.

DOI: 10.1016/j.surfin.2024.104152

“The Temperature Field Prediction and Estimation of Ti-Al Alloy Twin-Wire Plasma Arc Additive Manufacturing Using a One-Dimensional Convolution Neural Network”

Applied Sciences (2024-01-12)

Focus: Develops a CNN-based model for predicting temperature fields in additive manufacturing of Ti-Al alloys.

DOI: 10.3390/app14020661

“Dynamics of Microbubbles Induced by Thermal Shock in Inconel 718 Pulsed Laser Spot Welding and Formation of Micropores After Solidification in Molten Pool”

Journal of Materials Engineering and Performance (2023-12-07)

Focus: Examines microbubble dynamics and micropore formation during thermal shock in laser welding of Inconel 718.

DOI: 10.1007/s11665-023-08975-2

“Pulsed Laser Spot Welding Thermal-Shock-Induced Microcracking of Inconel 718 Thin Sheet Alloy”

Materials (2023-05-17)

Focus: Studies the effect of thermal shock on microcracking in thin-sheet Inconel 718 alloys.

DOI: 10.3390/ma16103775

“Study of Phase Evolution Behavior of Ti6Al4V/Inconel 718 by Pulsed Laser Melting Deposition”

Materials (2023-03-18)

Focus: Analyzes phase evolution in Ti6Al4V/Inconel 718 composite materials produced via pulsed laser deposition.

DOI: 10.3390/ma16062437

“Laser Welding Penetration Monitoring Based on Time-Frequency Characterization of Acoustic Emission and CNN-LSTM Hybrid Network”

Materials (2023-02-15)

Focus: Proposes a hybrid CNN-LSTM approach for real-time laser welding penetration monitoring.

DOI: 10.3390/ma16041614

“Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive”

Advanced Engineering Materials (2022-05)

Focus: Explores heat accumulation, microstructure changes, and stress dynamics in Ti-Al alloys during twin-wire plasma arc manufacturing.

DOI: 10.1002/adem.202101151

“Effect of Weld Pool Flow and Keyhole Formation on Weld Penetration in Laser-MIG Hybrid Welding Within a Sensitive Laser Power Range”

Applied Sciences (2022-04-19)

Focus: Investigates weld penetration mechanisms during laser-MIG hybrid welding processes.

DOI: 10.3390/app12094100

Conclusion

Ye Xin’s robust academic background, extensive research contributions, and leadership in superalloy welding and additive manufacturing make him a strong candidate for the Best Researcher Award. His innovative projects and industry collaborations highlight his impact on advancing materials science. Addressing gaps in global collaboration, recognition, and intellectual property contributions could further bolster his candidacy for prestigious honors.

Dandan Cui | 2D materails | Best Researcher Award

Ms.Dandan Cui | 2D materails | Best Researcher Award

Assistant research fellow at  Beihang University, China

🌟 Name: Dr. Dandan Cui 🎓 Title: Ph.D. in Physics 🏫 Current Position: Assistant Professor, Beihang University (2020–Present) 📚 Expertise: Two-dimensional materials, surface physicochemistry, and photocatalytic materials. 📖 Publications: Author of highly cited works in journals such as Journal of Materials Chemistry A and ACS Sustainable Chemistry & Engineering. 💡 Contribution: Pioneered advancements in photocatalytic materials, vacancy engineering, and photoelectrocatalysis.

Professional Profiles:

Education🎓

Ph.D. in Physics: Focused on surface physicochemistry and advanced materials research. 📖 Master’s Degree: Specialization in material engineering with research on photocatalysts. 🏫 Undergraduate Degree: Studied Physics with high distinction, fostering a strong foundation in theoretical and experimental science. 📘 Achievements: Graduated with honors and consistently recognized for academic excellence throughout studies.

Experience 🏫

2020–Present: Assistant Professor at Beihang University, advancing research in photocatalytic materials. 🔬 Collaborative Research: Published groundbreaking studies on BiOCl and BiVO4, influencing the field of material science. 📘 Leadership Roles: Mentored graduate students and coordinated multi-disciplinary research projects. 🌐 Outreach: Active participation in international conferences and workshops on advanced materials.

Awards and Honors 🏅

Highly Cited Paper Award: For influential research in Journal of Materials Chemistry A. 🎖️ Young Researcher Award: Recognized for contributions to photocatalysis and material design. 🏆 Research Excellence Award: Honored by Beihang University for innovative achievements. 📜 Invited Reviewer: Prestigious journals in materials science and chemistry.

Research Focus 🧪

Photocatalytic Materials: Design and development of novel semiconductors for energy applications. 🌀 Two-Dimensional Materials: Exploration of physicochemical properties for enhanced functionality. 💡 Vacancy Engineering: Leveraging defects for improved photocatalytic and photoelectrochemical properties. 🔬 Surface Wettability: Investigating its role in photoelectrocatalytic oxygen evolution. 🌍 Sustainability: Advancing green energy technologies through material innovation.

✍️Publications Top Note :

Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation
📝 Authors: Shi, Y.; Luo, B.; Sang, R.; Beller, M.; Li, X.
📚 Journal: Nature Communications, 2024, 15(1), 8189.
Focus: Combines nanoparticles with single-metal sites for formic acid dehydrogenation, enhancing catalytic performance.

Emerging Amorphized Metastable Structures to Break Limitations of 2D Materials for More Promising Electrocatalysis
📝 Authors: Gao, Y.; Liang, H.; Xu, H.; Huang, W.; Lin, L.
📚 Journal: ACS Energy Letters, 2024, 9(8), 3982–4002.
Focus: Reviews metastable 2D materials for improved electrocatalysis.

Emerging Advances of Liquid Metal toward Flexible Sensors
📝 Authors: Qin, J.; Cui, D.; Ren, L.; Shi, Y.; Du, Y.
📚 Journal: Advanced Materials Technologies, 2024, 9(14), 2300431.
Focus: Discusses liquid metal applications in flexible sensors.

Cobalt-Doped Aluminum Aerogels as Photocatalyst Fabricated by a Liquid Metal Reaction Method
📝 Authors: Xu, Q.; Lv, Z.; Zhu, Y.; Hao, W.; Du, Y.
📚 Journal: Journal of Chemical Education, 2024, 101(7), 2850–2856.
Focus: Explores cobalt-doped aerogels for photocatalysis.

Synchronous Pressure-Induced Enhancement in the Photoresponsivity and Response Speed of BiOBr
📝 Authors: Yue, L.; Cui, D.; Tian, F.; Du, Y.; Liu, B.
📚 Journal: Acta Materialia, 2024, 263, 119529.
Focus: Demonstrates enhanced photocatalytic properties of BiOBr under pressure.

Synergistic Surface Engineering of BiVO4 Photoanodes for Improved Photoelectrochemical Water Oxidation
📝 Authors: Wang, S.; Shi, Z.; Du, K.; Du, Y.; Hao, W.
📚 Journal: Small Methods, 2024.
Focus: Investigates BiVO4 photoanodes for water oxidation.

Constructing 2D Bismuth-Based Heterostructure for Highly Efficient Photocatalytic CO2 Reduction
📝 Authors: Xu, R.-H.; Jiang, H.-Y.; Cui, D.-D.; Hao, W.-C.; Du, Y.
📚 Journal: Tungsten, 2024.
Focus: Designs bismuth-based heterostructures for CO2 reduction.

Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid
📝 Authors: Shi, Y.; Luo, B.; Liu, R.; Beller, M.; Li, X.
📚 Journal: Angewandte Chemie – International Edition, 2023, 62(43), e202313099.
Focus: Enhances hydrogen generation using dual-metal catalysts.

Bismuth-Based Semiconductor Heterostructures for Photocatalytic Pollution Gases Removal
📝 Authors: Wang, Y.; Du, K.; Xu, R.; Hao, W.; Du, Y.
📚 Journal: Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100824.
Focus: Reviews bismuth-based materials for gas pollution removal.

Operando Reconstruction-Induced CO2 Reduction Activity and Selectivity for Cobalt-Based Photocatalysis
📝 Authors: Zhao, K.; Pang, W.; Jiang, S.; Fu, D.; Zhao, H.
📚 Journal: Nano Research, 2023, 16(4), 4812–4820.
Focus: Studies cobalt-based photocatalysis for CO2 reduction.

Conclusion

Dr. Dandan Cui is a highly suitable candidate for the Best Researcher Award, given her outstanding contributions to two-dimensional materials and photocatalytic material science. Her impactful publications, innovative research, and leadership in collaborative projects make her a strong contender. To further enhance her candidacy, she could expand her recognition, secure research funding, and increase her interdisciplinary and societal contributions. With her trajectory, she is poised to make even more significant advances in her field and inspire future researchers.

Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Assoc Prof Dr. Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Yue Wang is an accomplished Assistant Professor at Xi’an Jiaotong University’s School of Material Science and Engineering. With a deep focus on nanomechanics and electrochemical reactions, his research has contributed significantly to materials science, particularly in magnesium alloys and battery technologies. Wang completed his Ph.D. in 2018, building on extensive hands-on experience with TEM and other nanotechnology techniques. He is a recipient of numerous prestigious awards and has several high-impact publications in journals like Nature Communications and Science. His work pushes the boundaries of materials science, enabling innovations in corrosion resistance and energy storage. 🧪📚🔬

 

Publication Profile

Education🎓📖🌍

Yue Wang holds a Ph.D. in Materials Science and Engineering from Xi’an Jiaotong University, where he started his studies in 2013. He completed a Bachelor’s in the same field from Northwestern Polytechnical University in 2013. He was also a visiting student at Lawrence Berkeley National Lab, University of California, Berkeley, from February 2017 to February 2018. During this period, he gained valuable exposure to cutting-edge research environments, broadening his knowledge of nanomaterials and real-time electrochemical reactions. His academic journey showcases a strong foundation in both theoretical and applied materials science.

Experience🏫🧑‍🏫🛠️

Yue Wang has been with Xi’an Jiaotong University’s School of Material Science and Engineering since 2018, where he now serves as a tenured Assistant Professor. Prior to his tenure, he worked extensively in in-situ environmental TEM and nanomechanical testing, producing significant contributions to battery technologies and corrosion resistance. His research focuses on Si-based materials, Mg alloys, and novel microscopy techniques. He also served as a Teaching Assistant at the university, where he taught the course on mechanical properties of materials. His career reflects a strong emphasis on research and education in materials science.

Awards and Honors🏆

Yue Wang has received several prestigious awards throughout his career. He was recognized for his high-impact contributions in materials science, including publishing in leading journals such as Science and Nature Communications. His innovative research in the field of nanomechanics and corrosion resistance has earned him multiple research grants and distinctions within academic circles. He has also been an invited speaker at several international conferences, where his work on Si-based materials and Mg alloys has been widely lauded. His dedication to pushing the boundaries of materials research continues to earn him accolades. 🥇🎖️

Research Focus 🔬🧲📐

Yue Wang’s research is primarily centered on the mechanical properties and nanostructures of Si-based materials and metals. His work utilizes in-situ quantitative nanomechanics to probe these materials at the micro and nano levels. Wang’s expertise extends to environmental TEM studies, particularly in observing real-time electrochemical reactions in lithium/sodium ion batteries and developing anti-corrosion techniques for magnesium alloys. He also specializes in advanced microscopy, nanomechanical testing, and fabrication using Focused Ion Beam (FIB) technology, contributing to improved corrosion resistance and battery efficiency.

Publication  Top Notes

  • Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe
    Science, 2020, 369 (6503), 542-545
    Citations: 220
    This work explores the mechanical properties of InSe, a van der Waals semiconductor, highlighting its exceptional plasticity, a critical factor for flexible electronics.
  • Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2
    Nature Communications, 2018, 9 (1), 4058
    Citations: 98
    The paper introduces a method to enhance the corrosion resistance of Mg alloys through a CO2-based treatment.
  • In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon
    NPG Asia Materials, 2016, 8 (7), e291-e291
    Citations: 81
    A detailed study using transmission electron microscopy (TEM) to observe how crystalline silicon transitions to an amorphous state under mechanical stress.
  • Chestnut-like SnO2/C nanocomposites with enhanced lithium-ion storage properties
    Nano Energy, 2016, 30, 885-891
    Citations: 66
    This research investigates nanocomposites for improving lithium-ion battery performance.
  • Tension–compression asymmetry in amorphous silicon
    Nature Materials, 2021, 20 (10), 1371-1377
    Citations: 52
    The work explores the mechanical behavior of amorphous silicon, especially the asymmetry between tension and compression.
  • High-throughput screening of 2D van der Waals crystals with plastic deformability
    Nature Communications, 2022, 13 (1), 7491
    Citations: 45
    This paper focuses on the search for two-dimensional van der Waals materials with superior plasticity for next-generation flexible electronics.
  • Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam
    Applied Physics Letters, 2015, 106 (8)
    Citations: 36
    The study analyzes the impact of thermal treatment on the mechanical properties of silicon structures at the submicron scale.
  • Ceramic nanowelding
    Nature Communications, 2018, 9 (1), 96
    Citations: 34
    This paper discusses the novel concept of ceramic nanowelding, which could have implications for nanomanufacturing and electronics.
  • In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
    RSC Advances, 2016, 6 (14), 11441-11445
    Citations: 26
    In this work, the authors investigate the sodiation process in copper oxide nanowires, which is relevant for battery technology.
  • In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction
    RSC Advances, 2016, 6 (98), 96035-96038
    Citations: 21
    This research reveals how MoS2 structures change during sodium ion insertion, providing insights for energy storage applications.

Conclusion

The candidate’s expertise in nanomechanics, in-situ TEM, and nanomaterial testing positions them as a leader in their field, making them a worthy candidate for the Best Researcher Award. Their ability to innovate and apply cutting-edge techniques in materials science, combined with their teaching prowess, sets them apart. Expanding their international collaborations and research impact would further elevate their profile for such prestigious recognition.

JIBIN K P | Polymer nanocomposites | Best Scholar Award

Dr.  Mahatma Gandhi University, India

Dr. Jibin Keloth Paduvilan is a highly accomplished researcher in the field of polymer nanocomposites and nanomaterials, with significant contributions to the study of rubber nanocomposites, graphene oxide, and environmentally friendly materials. He holds a Ph.D. in Chemistry from Mahatma Gandhi University, Kottayam, Kerala, where he also serves as a Senior Researcher. With over seven years of R&D experience, including a patent for green tire applications and multiple publications in esteemed journals, Dr. Jibin’s work is at the forefront of advanced material science. Additionally, he is an Editorial Assistant for NANOSO Journal, Elsevier.

Professional Profiles:

Education 🎓 

Doctor of Philosophy (Chemistry)
🎓 2019-2024🏫 School of Chemical Sciences, Mahatma Gandhi University, Kottayam, KeralaDr. Jibin pursued his Ph.D. in Chemistry, focusing on cutting-edge research in nanostructured materials and their applications. Master of Science in Chemistry 🎓 2013-2015🏫 Mahatma Gandhi University, Kottayam, Kerala With a first rank and an impressive 87% score, Dr. Jibin completed his M.Sc. in Chemistry, where he developed a deep understanding of physical and chemical properties of materials. Bachelor of Science in Chemistry 🎓 2010-2013 🏫 Kannur University, Kerala Dr. Jibin completed his B.Sc. with a solid foundation in chemistry, achieving an 82% score.Higher Secondary Examination 🎓 2008-2010 🏫 Kerala Higher Secondary Education Board Secondary School Leaving Certificate 🎓 2008 🏫 General Education Department

Work Experience

Senior Researcher
📅 January 2019 – Present
🏫 School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Dr. Jibin Keloth Paduvilan has been serving as a Senior Researcher, contributing significantly to the field of polymer nanocomposites and nanomaterials. His research focuses on developing innovative materials for advanced applications, with a strong emphasis on sustainable and environmentally friendly solutions.Editorial Assistant to NANOSO Journal, Elsevier
📅 January 2019 – Present
📚 NANOSO Journal, Elsevier
Dr. Jibin has been an Editorial Assistant for NANOSO Journal, where he collaborates with leading researchers and ensures the publication of high-quality research in the field of nanoscience and nanotechnology.Junior Research Fellow
📅 October 2017 – October 2019
🏫 International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
During his tenure as a Junior Research Fellow, Dr. Jibin honed his skills in the synthesis and characterization of nanomaterials, laying the foundation for his future research endeavors.

Research for Best Scholar Award: Evaluation of Dr. JIBIN K P

Strengths for the Award:

  1. Extensive Research Experience:
    • With over seven years in R&D, Dr. JIBIN K P has demonstrated significant expertise in polymer nanocomposites, hybrid nanostructures, and nanomaterial applications. This extensive experience highlights their deep understanding of material science and innovative research capabilities.
  2. Diverse Research Interests:
    • Their research spans a range of topics including graphene oxide, 2D materials, biopolymers, and environment-friendly materials. This breadth of interest indicates a holistic approach to material science and a commitment to advancing sustainable and cutting-edge technologies.
  3. Notable Publications and Patent:
    • [Your Name] has published impactful research in high-quality journals such as Nanomaterials and has been granted a patent (No. 512432) for core shell structure reinforced natural rubber composites. This demonstrates their ability to translate research into practical and innovative solutions.
  4. Editorial Experience:
    • Serving as an Editorial Assistant to NANOSO Journal, [Your Name] has contributed to the academic community, further reflecting their expertise and engagement in the field of nanoscience and nanotechnology.
  5. Academic Excellence:
    • Their strong educational background, including a Ph.D. in Chemistry with a first-rank Master’s degree, underscores a solid foundation in the subject matter and a commitment to academic excellence.

Areas for Improvement:

  1. Broader Collaboration:
    • Expanding collaborative research efforts with international institutions could provide new perspectives and enhance the impact of their work on a global scale.
  2. Increased Focus on Emerging Trends:
    • Staying updated with emerging trends in material science and nanotechnology, such as advancements in AI applications or new nanomaterial synthesis techniques, could further enhance their research scope and relevance.
  3. Enhancing Public Engagement:
    • Increasing public and industry engagement through seminars, workshops, or popular science articles could elevate the visibility and societal impact of their research findings.

 

✍️Publications Top Note :

 

Advances and Future Outlook in Epoxy/Graphene Composites for Anticorrosive Applications

Authors: JS George, JK Paduvilan, N Salim, J Sunarso, N Kalarikkal, N Hameed

Journal: Progress in Organic Coatings

Volume: 162

Article Number: 106571

Year: 2022

Citations: 67

This article reviews the development of epoxy/graphene composites, emphasizing their potential in anticorrosive applications. The review covers various synthesis methods, the role of graphene in enhancing the anticorrosive properties, and the challenges in producing high-performance composites. The future outlook suggests that further research into functionalized graphene and large-scale production techniques could lead to more effective and commercially viable anticorrosive coatings.

Surface Modification of Wool Fabric Using Sodium Lignosulfonate and Subsequent Improvement in the Interfacial Adhesion of Natural Rubber Latex in the Wool/Rubber Composites

Authors: S Jose, S Thomas, KP Jibin, KS Sisanth, V Kadam, DB Shakyawar

Journal: Industrial Crops and Products

Volume: 177

Article Number: 114489

Year: 2022

Citations: 27

This study focuses on the surface modification of wool fabric using sodium lignosulfonate to improve its compatibility with natural rubber latex. The research highlights the enhanced interfacial adhesion in wool/rubber composites, which could be beneficial for the development of advanced textile materials.

Assessment of Graphene Oxide and Nanoclay Based Hybrid Filler in Chlorobutyl-Natural Rubber Blend for Advanced Gas Barrier Applications

Authors: J Keloth Paduvilan, P Velayudhan, A Amanulla, H Joseph Maria

Journal: Nanomaterials

Volume: 11, Issue 5

Article Number: 1098

Year: 2021

Citations: 25

This article examines the use of graphene oxide and nanoclay as hybrid fillers in chlorobutyl-natural rubber blends, focusing on their potential as gas barrier materials. The study demonstrates that the incorporation of these fillers significantly enhances the gas barrier properties, making the composites suitable for advanced applications in various industries.

Silica-Graphene Oxide Reinforced Rubber Composites

Authors: KP Jibin, V Prajitha, S Thomas

Journal: Materials Today: Proceedings

Volume: 34

Pages: 502-505

Year: 2021

Citations: 18

Conclusion:

Dr. JIBIN K P is a distinguished scholar with a robust track record in the field of polymer nanocomposites and nanotechnology. Their extensive research experience, notable publications, and innovative contributions such as the granted patent showcase their excellence and leadership in material science. Addressing areas for improvement, such as broadening collaborations and staying abreast of emerging trends, could further amplify their impact and recognition in the field. Their dedication and achievements make them a strong candidate for the Best Scholar Award, reflecting both their current excellence and future potential in advancing material science and nanotechnology.

Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Institute of Chemical Technology Mumbai Marathwada campus Jalna , Gabon

Prof. Girish Mukundrao Joshi, a Full Professor of Engineering Physics and Materials at ICT Mumbai’s off-campus in Marathwada Jalna, boasts over 20 years of teaching experience. He has been a visiting scientist at UCLM, Spain, and has published 150 articles in prestigious international journals, holding two granted patents. An APA life member, fellow of the Maharashtra Academy of Sciences, and life fellow of the Indian Chemical Society, he received the National Best Teacher Award by Krishmurthy Trust in 2017. He has mentored seven doctorates, executed major research projects, and serves on various editorial and expert boards. Recently, he was appointed to CIPET’s Innovation Cell and DBATU’s Academic Council.

 

Professional Profiles:

Academic and Professional Background 🎓

Prof. Girish Mukundrao Joshi is currently a Full Professor in Engineering Physics and Materials at ICT Mumbai’s off-campus Marathwada Jalna, Maharashtra. With over 20 years of teaching experience, he has significantly contributed to the academic field. He has served as a visiting scientist at UCLM, Spain, in 2009 and 2016.

Publications and Patents 📚

Prof. Joshi has published 150 articles in reputed international journals and holds credit for two granted patents. His scholarly work is widely recognized, showcasing his expertise and dedication to research.

Memberships and Fellowships 🏅

APA Life Member (2024)Fellow of the Maharashtra Academy of Sciences (2019)Life Fellow of the Indian Chemical Society (2021)

Awards and Recognition 🏆

He was honored with the National Best Teacher Award by Krishmurthy Trust, Tirupati, in 2017. Recently, he received the Best Professor Award from Modern Plastic India in 2024.

Teaching and Mentorship 👩‍🏫

Prof. Joshi is celebrated for his teaching tenure at VIT Vellore (2010-2018). He has guided seven doctorates and is currently mentoring four more. His dedication to student development is commendable.

Research Projects 🔬

He has led four significant research projects as the chief investigator for organizations such as the Naval Research Board (NRB), DRDO, Dover India Industry, and Savitra Printer Nashik, under CSR-UGC-DAE.

Editorial and Advisory Roles 📖

Prof. Joshi serves on the editorial board of Modern Plastic India Magazine and is an expert board member for the Journal of Physicascripta – IOP. He is also a Board of Studies (BOS) member for SRTMU, Nanded, and ICT Mumbai.

✍️Publications Top Note :

Enhanced Physio‐Chemical Properties of PMMA/PS Polymer Blends by DC Glow Discharge Plasma Treated K2TI6O13 for Electronic Applications

Journal: ChemistrySelect

Date: 2024-07-18

DOI: 10.1002/slct.202401048

Contributors: Shankar S. Humbe, Girish M. Joshi, R. R. Deshmukh

2. Hydrophobic Polymer Nano Hybrid Ternary Composite Electrode for Nanomolar Tracing of Cd2+ Ions

Journal: Journal of Applied Polymer Science

Date: 2024-04-20

DOI: 10.1002/app.55249

Contributors: Savita S. Mane, Girish M. Joshi

3. Influence of Hybrid Filler on Charge Conduction and Storage Performance of Polyvinyl Chloride/Nitrocellulose Blend for Hybrid Electrolyte Application

Journal: ChemistrySelect

Date: 2024-03-18

DOI: 10.1002/slct.202304421

Contributors: Pratibha S. Jadhav, Girish M. Joshi

4. Nanostructural Characterization of Luminescent Polyvinyl Alcohol / Graphene Quantum Dots Nanocomposite Films

Date: 2023-11

DOI: 10.20944/preprints202311.0500.v1

Contributors: Elumalai D, Rodríguez B, Kovtun G, Hidalgo P, Méndez B, Kalleemula S, Joshi GM, Cuberes MT

5. Recent Scenario of Surfactants Modified Graphene and Its Derivatives‐Based Polymer Nanocomposites—Review

Journal: Macromolecular Chemistry and Physics

Date: 2023-11

DOI: 10.1002/macp.202300122

Contributors: Shreya P. Yeole, Pratibha S. Jadhav, Girish M. Joshi