Bingcheng Yi | Bioinspired Functional Surfaces | Best Researcher Award

Mr. Bingcheng Yi | Bioinspired Functional Surfaces  | Best Researcher Award

Associated professor at University of Health and Rehabilitation Sciences, china

Dr. Zhang Jinde is an Associate Professor at the University of Health and Rehabilitation Sciences, specializing in vascular tissue engineering and biomaterial modification for tissue regeneration. He completed his PhD at Donghua University, focusing on biomaterials, and has worked as a postdoctoral researcher at Shanghai Ninth People’s Hospital. With extensive experience in biomimetic materials, Dr. Zhang is dedicated to developing advanced biomaterials like nanofibers and hydrogels for tissue regeneration. 🌱

Publication Profile

scopus

Education 🎓

PhD in Biomaterials, Donghua University, 2020 👩‍🎓Master in Biochemical Engineering, Donghua University, 2016 🧪Bachelor in Food Quality and Safety, Hainan University, 2013 🍽️

Experience 💼

2022–Present: Associate Professor, University of Health and Rehabilitation Sciences 🏫2020–2022: Postdoc, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University 🏥2016–2020: Research Assistant, Donghua University 🔬

Awards and Honors 🏅🏆

Dr. Zhang has received numerous awards, including the National Scholarship for Graduate Students (2019), Best Research Presentation Award at the International Biomaterials Conference (2020), and an Excellence in Innovation Award from the University of Health and Rehabilitation Sciences (2022).

Research Focus 🔬

His research focuses on vascular tissue engineering, developing advanced biomaterials like nanofiber hydrogels to regulate cell behaviors, mechanisms of cell-matrix interactions in tissue remodeling, and designing biomimetic materials for effective tissue regeneration. 💡

Publications 📖

Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair
Authors: Shao, T., Yan, M., Liu, R., Yi, B., Zhou, Q.
Journal: Carbohydrate Polymers
Year: 2025, Volume 352, Article 123150
Summary: The article focuses on a bacterial cellulose-based scaffold modified with anti-CD29 antibody for selectively capturing urine-derived stem cells aimed at bladder repair.

Fucoidan-derived carbon dots as nanopenetrants of blood-brain barrier for Parkinson’s disease treatment
Authors: Han, M., Yi, B., Song, R., Shen, X., Zhou, Q.
Journal: Journal of Colloid and Interface Science
Year: 2025, Volume 680, pp. 516–527
Summary: This study investigates fucoidan-derived carbon dots as nanocarriers for penetrating the blood-brain barrier to treat Parkinson’s disease.

ADSCC-CM-Induced Keratin Hydrogel-Based Bioactive Microneedle Patch Containing Triamcinolone Acetonide for the Treatment of Pathological Scar
Authors: Li, C., Yi, B., Xu, Q., Zhou, Q., Wang, Z.
Journal: Advanced Functional Materials
Year: 2024, Volume 34(46), Article 2400457
Summary: This research presents a keratin hydrogel-based microneedle patch, induced by ADSCC-conditioned media, for the treatment of pathological scars.

Mechanical loading on cell-free polymer composite scaffold enhances in situ regeneration of fully functional Achilles tendon in a rabbit model
Authors: Wang, W., Lin, X., Tu, T., Zhang, P., Liu, W.
Journal: Biomaterials Advances
Year: 2024, Volume 163, Article 213950
Summary: The article discusses the effects of mechanical loading on a cell-free polymer scaffold, promoting tendon regeneration in a rabbit model.

Piezoelectrically-enhanced composite membranes mimicking the tendinous electrical microenvironment for advanced tendon repair
Authors: Wang, W., Wang, P., Li, Q., Liu, W., Wang, X.
Journal: Nano Today
Year: 2024, Volume 57, Article 102381
Summary: This study explores the use of piezoelectric composite membranes for tendon repair by mimicking the electrical microenvironment.

Ecofriendly and high-performance flexible pressure sensor derived from natural plant materials for intelligent audible and silent speech recognition
Authors: Zheng, X., Yi, B., Zhou, Q., Li, Y., Li, Y.
Journal: Nano Energy
Year: 2024, Volume 126, Article 109701
Summary: The article presents a flexible pressure sensor made from natural plant materials, intended for speech recognition applications.

Sulfated Chitosan-Modified CuS Nanocluster: A Versatile Nanoformulation for Simultaneous Antibacterial and Bone Regenerative Therapy in Periodontitis
Authors: Chen, X., Huang, N., Wang, D., Yuan, C., Zhou, Q.
Journal: ACS Nano
Year: 2024, Volume 18(22), pp. 14312–14326
Summary: This study introduces a sulfated chitosan-modified CuS nanocluster for combined antibacterial and bone regeneration therapy in periodontitis.

Polylysine-derived carbon quantum dots modulate T lymphocyte responses for periodontitis treatment
Authors: Deng, X., Yi, B., Guo, F., Yuan, C., Zhou, Q.
Journal: Materials and Design
Year: 2024, Volume 241, Article 112975
Summary: The research highlights how polylysine-derived carbon quantum dots can modulate T lymphocyte responses to treat periodontitis.

Physiological cyclic stretching potentiates the cell–cell junctions in vascular endothelial layer formed on aligned fiber substrate
Authors: Shi, Y., Li, D., Yi, B., Xu, T., Zhang, Y.
Journal: Biomaterials Advances
Year: 2024, Volume 157, Article 213751
Summary: This paper explores how cyclic stretching can enhance cell–cell junctions in a vascular endothelial layer on an aligned fiber substrate.

The Combination of Aligned PDA-Fe@PLCL Conduit with Aligned GelMA Hydrogel Promotes Peripheral Nerve Regeneration
Authors: Wang, P., You, J., Liu, G., Yi, B., Huang, Q.
Journal: Advanced Healthcare Materials
Year: 2024 (in press)
Summary: This research proposes a combined conduit and hydrogel approach to promote peripheral nerve regeneration.

Conclusion

The candidate is highly deserving of the Best Researcher Award due to their solid academic background, exceptional research contributions in biomaterials, and the promising potential for their findings to shape the future of regenerative medicine and tissue engineering. While areas like interdisciplinary collaboration, public engagement, and commercialization could be strengthened, their work shows significant potential for continued innovation. Given their drive and track record of excellence, they are poised to make enduring contributions to both academic and clinical fields.

Xin Ye | TiNi-based alloy additive manufacturing | Best Researcher Award

Dr. Xin Ye | TiNi-based alloy additive manufacturing | Best Researcher Award

Lecturer at  HElectric Power Electric Equipment Co., Ltd, China

🌟 Dr. Ye Xin, a distinguished lecturer and master tutor at the School of Materials Science and Engineering, Shanghai University of Engineering Science, specializes in superalloy welding, repair, and additive manufacturing. 📚 Holding a Ph.D. in Material Processing Engineering from Shanghai Jiao Tong University, he has made significant contributions to enterprise technical support and process optimization, earning recognition for his expertise in welding and remanufacturing technologies. 🌍

Professional Profiles:

orcid

Education 🎓

Ph.D. in Material Processing Engineering from Shanghai Jiao Tong University. 📘 International Welding Engineer Certification with expertise in arc and laser welding. 📗 Specialized in numerical simulation and optimization design for high-temperature alloy processing. 📕 Master Tutor and Technical Expert supporting academic and industry initiatives.

Experience 💼

Over 8 years as a lecturer and technical lead in superalloy welding. 🔬 Presided over 1 national experimental fund, 1 local research project, and contributed to 5 national initiatives. 🏗 Led or participated in 20+ consultancy and industrial projects, showcasing transformative innovation. ✍ Published 20+ peer-reviewed SCI and EI-indexed papers.

Awards and Honors 🏅

Recipient of prestigious national and provincial research grants. 🎖 Contributor to impactful collaborative projects in materials science. 🌟 Recognized for advancing high-temperature alloy repair technologies. 🎓 Celebrated for academic excellence and industry partnerships.

Research Focus 🔍

Superalloy welding, repair, and additive manufacturing. 📈 Advanced arc and laser welding for high-performance materials. 🔧 Numerical simulation to optimize material behavior and processing. 🔬 Developing cutting-edge technologies for industry innovation.

✍️Publications Top Note :

“Influence of Surface Pretreatment of Steel Substrate on the Interfacial Microstructure and Tensile Properties of Laser Al/Steel Joints”

Materials Letters (2024-12)

Focus: Investigates how surface treatments of steel substrates affect the microstructure and tensile strength in aluminum-steel laser joints.

DOI: 10.1016/j.matlet.2024.137523

“Study on Microstructure and Thermal Cracking Sensitivity of Deposited Ti6Al4V/Inconel 718 Composites Made by Two-Wire Arc Additive Manufacturing”

Materials (2024-12-06)

Focus: Explores the microstructure and cracking behavior of Ti6Al4V/Inconel 718 composites fabricated using two-wire arc additive manufacturing.

DOI: 10.3390/ma17235989

“The Differences in Bonding Properties and Electrical, Thermal Conductivity Between the Preferred Crystallographic Orientation Interface of Cu3Sn/Cu”

Surfaces and Interfaces (2024-03)

Focus: Studies the effects of crystallographic orientation on bonding and thermal/electrical properties at Cu3Sn/Cu interfaces.

DOI: 10.1016/j.surfin.2024.104152

“The Temperature Field Prediction and Estimation of Ti-Al Alloy Twin-Wire Plasma Arc Additive Manufacturing Using a One-Dimensional Convolution Neural Network”

Applied Sciences (2024-01-12)

Focus: Develops a CNN-based model for predicting temperature fields in additive manufacturing of Ti-Al alloys.

DOI: 10.3390/app14020661

“Dynamics of Microbubbles Induced by Thermal Shock in Inconel 718 Pulsed Laser Spot Welding and Formation of Micropores After Solidification in Molten Pool”

Journal of Materials Engineering and Performance (2023-12-07)

Focus: Examines microbubble dynamics and micropore formation during thermal shock in laser welding of Inconel 718.

DOI: 10.1007/s11665-023-08975-2

“Pulsed Laser Spot Welding Thermal-Shock-Induced Microcracking of Inconel 718 Thin Sheet Alloy”

Materials (2023-05-17)

Focus: Studies the effect of thermal shock on microcracking in thin-sheet Inconel 718 alloys.

DOI: 10.3390/ma16103775

“Study of Phase Evolution Behavior of Ti6Al4V/Inconel 718 by Pulsed Laser Melting Deposition”

Materials (2023-03-18)

Focus: Analyzes phase evolution in Ti6Al4V/Inconel 718 composite materials produced via pulsed laser deposition.

DOI: 10.3390/ma16062437

“Laser Welding Penetration Monitoring Based on Time-Frequency Characterization of Acoustic Emission and CNN-LSTM Hybrid Network”

Materials (2023-02-15)

Focus: Proposes a hybrid CNN-LSTM approach for real-time laser welding penetration monitoring.

DOI: 10.3390/ma16041614

“Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive”

Advanced Engineering Materials (2022-05)

Focus: Explores heat accumulation, microstructure changes, and stress dynamics in Ti-Al alloys during twin-wire plasma arc manufacturing.

DOI: 10.1002/adem.202101151

“Effect of Weld Pool Flow and Keyhole Formation on Weld Penetration in Laser-MIG Hybrid Welding Within a Sensitive Laser Power Range”

Applied Sciences (2022-04-19)

Focus: Investigates weld penetration mechanisms during laser-MIG hybrid welding processes.

DOI: 10.3390/app12094100

Conclusion

Ye Xin’s robust academic background, extensive research contributions, and leadership in superalloy welding and additive manufacturing make him a strong candidate for the Best Researcher Award. His innovative projects and industry collaborations highlight his impact on advancing materials science. Addressing gaps in global collaboration, recognition, and intellectual property contributions could further bolster his candidacy for prestigious honors.

Subrat Kumar Behera | Constitutive modelling | Young Scientist Award

Dr. Subrat Kumar Behera | Constitutive modelling | Young Scientist Award

Dr. University of Louisville, United States

Dr. Subrat Kumar Behera is a dedicated researcher with expertise in smart material mechanics and the dynamics of smart material systems. He holds a Ph.D. in Mechanical Engineering from IIT Patna, where he developed constitutive models for electro-magneto active soft solids. His M.Tech. research at VSSUT focused on the dynamics of laminated composite plates. Currently, a Postdoctoral Fellow at the University of Louisville, he works on material modeling of lithium-ion battery components and architect metamaterials. His research interests include continuum mechanics, constitutive modeling, electro-magneto-viscoelasticity, soft material mechanics, and nonlinear dynamics. Dr. Behera has received several awards, including a Best Paper Award at IPRoMM 2022.

 

Professional Profiles:

Google scholar

🎓 EDUCATION

Ph.D. – Mechanical Engineering | 2019 – 2023IIT Patna – Bihta, Bihar (India)Passed with 8.14 CGPA.Thesis Title: Constitutive Modeling of Electro-magneto-viscoelastic Smart Materials with Applications.Supervisor: Dr. Somnath SarangiM. Tech. – Machine Design & Analysis (Mechanical Engineering) | 2016 – 2018VSSUT – Burla, Odisha (India)Passed with 8.68 CGPA.Thesis Title: Free vibration analysis of undamped laminated composite plates.Supervisor: Dr. Mihir Kumar SutarB. Tech. – Mechanical Engineering | 2011 – 2015BPUT – Rourkela, Odisha (India)Passed with 7.72 CGPA.Higher Secondary Examination Certificate, Odisha(HSEC) | 2009 – 2011Council of Higher Secondary Education, Odisha(CHSE)Passed with 73.66 %.High School Certificate Examination, Odisha (HSCE) | 2009Board of Secondary Examination, Odisha (BSE)Passed with 85.66 %.

🧑‍🔬 RESEARCH EXPERIENCE

Post Doctoral Researcher | 2023-OngoingTool: MATLAB, LaTex, Microsoft OfficeResearch Topic: Lithium-ion battery component and architect metamaterialsBrief Research: Currently working on the constitutive material modeling of lithium-ion battery components and architect metamaterials. The primary objective is to develop a physics-based constitutive law that effectively demonstrates the inelastic phenomenon under large deformation.

📜 PROFILE – ABOUT ME

Dr. Subrat Kumar Behera is a dedicated researcher with expertise in the domains of smart material mechanics and the dynamics of smart material systems. His strong academic foundation forms the cornerstone of his research journey. His enthusiasm for his research field is enhanced by his extensive practical expertise, honed through dedicated research during his postgraduate studies. His doctoral work focused on the constitutive modeling of electro-magneto active soft solids and their applications in real-world scenarios, demonstrating a commitment to understanding the complex behaviors of smart materials. In his Master’s research, he explored the dynamics of laminated composite plates, showcasing early expertise in advanced material systems. His primary research interests include the following:⚙️ Continuum mechanics🧩 Constitutive modeling⚡️ Electro-magneto-visoelasticity🌐 Soft material mechanics🧬 Soft architect metamaterials📈 Non-linear dynamicsHe is constantly working towards acquiring more knowledge to work on new aspects of his research area. He is actively looking for an academic and R&D position in the above-mentioned research domain, where he can utilize all his skills to get new insights into the field of smart materials and systems and contribute to technological development.

💼 WORK EXPERIENCE

Postdoctoral Fellow | Dec. 2023 – OngoingDepartment of Mechanical Engineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY-40292, United States🔬 Projects: To develop constitutive material modeling and validation of battery components and 3D printable polymers.🎯 Objective: To incorporate strain rate effect for large deformation polymeric separator and soft architect metamaterials.Teaching Assistant | 2019 – 2023Department of Mechanical Engineering, IIT Patna, Bihta – 801106, Bihar, India📚 Subjects: Dynamics, Engineering Mechanics, Composite Materials.🛠️ Workshop: Foundry shop, CNC Centre.

🏆 ACHIEVEMENTS

OJEE | Odisha Joint Entrance Examination | Qualified in 2011.OUAT | Odisha University of Agriculture and Technology | Qualified in 2011.GATE | Graduate Aptitude Test in Engineering | Mechanical Engineering (Me) | Qualified in 2016.Awards & Honours:🥇 First candidate at the institute (IIT Patna) to earn a Ph.D. via express mode thesis evaluation.🏅 Best Paper Award in conference IPRoMM 2022 – at IIT(ISM) Dhanbad, India. December 22-23, 2022.💰 JRF and SRF equivalent monthly scholarship (Ministry of Education), Government of India, during Ph.D. (January 2019-Present), an annual contingency grant of INR 10000.00 and national/international conference travel grant of INR 100000.00.

✍️Publications Top Note :

Modeling of Electro–Viscoelastic Dielectric Elastomer: A Continuum Mechanics Approach

Authors: SK Behera, D Kumar, S Sarangi

Journal: European Journal of Mechanics-A/Solids

Volume: 90

Article: 104369

Cited By: 28

Year: 2021

2. Constitutive Modeling of Damage-Induced Stress Softening in Electro-Magneto-Viscoelastic Materials

Authors: SK Behera, D Kumar, S Sarangi

Journal: Mechanics of Materials

Volume: 171

Article: 104348

Cited By: 10

Year: 2022

3. Field Dependent Magneto-Viscoelasticity in Particle Reinforced Elastomer

Authors: SK Behera, RA Ranjan, S Sarangi

Journal: European Journal of Mechanics-A/Solids

Volume: 99

Article: 104929

Cited By: 6

Year: 2023

4. Dynamic Modelling and Analysis of a Biological Circular Membrane

Authors: SK Behera, RA Ranjan, D Kumar, S Sarangi, R Bhattacharyya

Journal: International Journal of Engineering Science

Volume: 188

Article: 103864

Cited By: 3

Year: 2023

5. An Alternative Form of Energy Density Function Demonstrating the Electro-Elastic Deformation of a Dielectric Cylindrical Actuator

Authors: D Kumar, SK Behera, K Arya, S Sarangi

Journal: Mechanics of Soft Materials

Volume: 4 (1)

Article: 3

Cited By: 3

Year: 2022

6. Nonlinear Dynamics of an Artificial Muscle with Elastomer–Electrode Inertia: Modelling and Analysis

Authors: RA Ranjan, SK Behera, S Sarangi

Journal: Chaos, Solitons & Fractals

Volume: 174

Article: 113820

Cited By: 2

Year: 2023

7. Finite Deformation of a Dielectric Cylindrical Actuator: A Continuum Mechanics Approach

Authors: D Kumar, SK Behera, S Sarangi

Journal: Recent Advances in Computational Mechanics and Simulations: Volume-II: Nano …

Cited By: 2

Year: 2021

8. Constitutive Modeling of Electro-Magneto-Rheological Fluids Before Yielding

Authors: SK Behera, S Sarangi

Journal: Mechanics Research Communications

Volume: 136

Article: 104253

Cited By: 1

Year: 2024

9. Emergence of Chaos and Its Control in a Dissipative Dielectric Elastomeric Membrane System Under Periodic Loads

Authors: SK Behera, RA Ranjan, S Sarangi, AK Samantaray, R Bhattacharyya

Journal: Journal of Sound and Vibration

Volume: 577

Article: 118328

Year: 2024

10. Nonlinear Dynamics and Chaos Control of Circular Dielectric Energy Generator

Authors: SK Behera, RA Ranjan, S Sarangi, AK Samantaray, R Bhattacharyya

Journal: Communications in Nonlinear Science and Numerical Simulation

Volume: 128

Article: 107608

Year: 2024

11. Universal Rate-Dependence in Electro-Magneto-Active Polymeric Composites

Authors: SK Behera, D Kumar, CS Maurya, S Sarangi

Journal: Composites Science and Technology

Volume: 237

Article: 110015

Year: 2023

12. Nonlinear Oscillation of Biological Membrane: A Lumped Parameter Modelling Approach

Authors: RA Ranjan, SK Behera, S Sarangi

Conference: International Conference on Industrial Problems on Machines and Mechanism

Year: 2022

13. Free Vibration Analysis and Investigation of Mechanical Properties of Un-Damped Woven Roving Laminated Composite Plate Using Different Boundary Conditions

Authors: MK Sutar, SK Behera, S Pattnaik

Journal: Materials Science Forum

Volume: 978

Pages: 264-270

Year: More details

 

Garima Mathur | Functionalization of biomaterials | Women Researcher Award

Mr. Garima Mathur | Functionalization of biomaterials | Women Researcher Award

Mr. Jaypee Institute of Technology, India

Mr. Garima Mathur holds a Ph.D. from the Indian Institute of Technology Roorkee (2008), an M.Sc. in Biotechnology from Panjab University, Chandigarh (2002), and a B.Sc. in Biotechnology from Kurukshetra University (2000). Currently, she is an Assistant Professor (Senior grade) at the Department of Biotechnology, Jaypee Institute of  Technology, Noida. Her professional journey includes roles as Assistant Professor (Gr-II and Gr-I), Research Associate, and Postdoctoral Fellow in prestigious institutions. She has worked as a Scientist in Application R&D at Novozymes South Asia Pvt. Ltd. Bangalore. Dr. [Your Name] is a recipient of several awards, including a GATE Life Science score of 97.79 percentile and a CSIR-UGC JRF, among others.

Professional Profiles:

Scopus

🎓 Academic Qualifications

2008: PhD, Indian Institute of Technology Roorkee (India)
2002: M.Sc. (Biotechnology), Panjab University, Chandigarh
2000: B.Sc. (Biotechnology), Kurukshetra University

👨‍🏫 Professional Experience 

Assistant Professor (Senior grade), Department of Biotechnology, Jaypee Institute of Technology, Noida. September 2018 onwards
Assistant Professor (Gr-II), Department of Biotechnology, Jaypee Institute of Technology, Noida. Jan 1, 2016 – September 2018
Assistant Professor (Gr-I), Department of Biotechnology, Jaypee Institute of Technology, Noida. Aug 1, 2013 – Dec 31, 2015
Research Associate, Department of Biotechnology, Jaypee Institute of  Technology, Noida. Dec 21, 2010 – Aug 1, 2013
Post Doctoral Fellow, Department of Biotechnology and Bioinformatics, Jaypee University of Technology, Waknaghat. Feb 9, 2010 – Dec 14, 2010
Scientist in Application R&D, Novozymes South Asia Pvt. Ltd., Bangalore. Dec 2009 – June 2009
Research Associate, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi (INDIA) on a DBT-funded project. Dec 2007 – April 2008

🏆 Awards and Honors

GATE in Life Science (2002): Score 97.79 percentile (All India rank 53)
CSIR-UGC (NET) JRF in Life Science (June 2003)
Agricultural Scientists Recruitment Board National Eligibility Test (2003)
Women Scientist Scholarship Scheme (2003), TIFAC, DST, New Delhi
Gold Medal in M.Sc. (Biotechnology) from Panjab University, Chandigarh
Travel Grant Support by Dept. of Science and Technology, Govt of India for oral presentation at BIOMICROWORLD 2013, Madrid, Spain. October 2-4, 2013

✍️Publications Top Note :

Production and Characterization of Bacterial Cellulose Synthesized by Komagataeibacter sp. Isolated from Rotten Coconut Pulp

Authors: Srivastava, S., Mathur, G.
Journal: Asian Journal of Chemistry
Year: 2024
Volume: 36
Issue: 5
Pages: 1183–1190
Type: Open access
Citations: 0
Abstract: This link is disabled.
Related Documents: This link is disabled.

Current Trends in Chitosan Functionalization Methods and Their Applications

Authors: Pandey, R., Mathur, G.
Journal: Starch/Staerke
Year: 2024
Type: Review, Article in Press
Citations: 0
Abstract: This link is disabled.
Related Documents: This link is disabled.

Statistical Optimization of Bioprocess Parameters for Enhanced Production of Bacterial Cellulose from K. saccharivorans BC-G1

Authors: Srivastava, S., Mathur, G.
Journal: Brazilian Journal of Microbiology
Year: 2024
Type: Article in Press
Citations: 0
Abstract: This link is disabled.
Related Documents: This link is disabled.

Biopolymer-Based Biosensors: Fabrication and Properties

Authors: Pandey, R., Mathur, G.
Book: Springer Proceedings in Materials
Year: 2024
Volume: 37
Pages: 89–98
Type: Book Chapter
Citations: 0
Abstract: This link is disabled.
Related Documents: This link is disabled.

Bacterial Cellulose: A Multipurpose Biomaterial for Manmade World

Authors: Srivastava, S., Mathur, G.
Journal: Current Applied Science and Technology
Year: 2023
Volume: 23
Issue: 3
Type: Open access, Review
Citations: 1
Abstract: This link is disabled.
Related Documents: This link is disabled.

Komagataeibacter saccharivorans Strain BC-G1: An Alternative Strain for Production of Bacterial Cellulose

Authors: Srivastava, S., Mathur, G.
Journal: Biologia
Year: 2022
Volume: 77
Issue: 12
Pages: 3657–3668
Citations: 4
Abstract: This link is disabled.
Related Documents: This link is disabled.

Effect of Different Media on Growth Kinetics Parameters of Aspergillus ochraceus: An Approach Towards Production of Fungal Biomass

Authors: Rahman, R.U., Mathur, G.
Journal: Current Trends in Biotechnology and Pharmacy
Year: 2021
Volume: 15
Issue: 6
Pages: 1–3
Citations: 1
Abstract: This link is disabled.
Related Documents: This link is disabled.

Current Research and Perspectives on Microalgae-Derived Biodiesel

Authors: Singh, K., Kaloni, D., Gaur, S., Kushwaha, S., Mathur, G.
Journal: Biofuels
Year: 2020
Volume: 11
Issue: 1
Pages: 1–18
Citations: 19
Abstract: This link is disabled.
Related Documents: This link is disabled.

Evaluating the Therapeutic Efficiency and Drug Targeting Ability of Alkaloids Present in Rauwolfia serpentina

Authors: Singh, M., Kaur, R., Rajput, R., Mathur, G.
Journal: International Journal of Green Pharmacy
Year: 2017
Volume: 11
Issue: 3
Pages: 132–142
Citations: 18
Abstract: This link is disabled.
Related Documents: This link is disabled.

Effect of Carbon Sources on Physicochemical Properties of Bacterial Cellulose Produced from Gluconacetobacter xylinus MTCC 7795

Authors: Singh, R., Mathur, A., Goswami, N., Mathur, G.
Journal: E-Polymers
Year: 2016
Volume: 16
Issue: 4
Pages: 331–336
Citations: 10
Abstract: This link is disabled.
Related Documents: This link is disabled.