Simon Yishak | Manufacturing Engineering | Academic Excellence in Mechanics Award

Mr. Simon Yishak | Manufacturing Engineering | Academic Excellence in Mechanics Award

Lecturer at Arba Minch University, Ethiopia

🌟 Simon Yishak Kolebaye is a passionate academic leader serving as a lecturer and Head of the Automotive Engineering Department at Arba Minch University, Ethiopia, since 2016. 🎓 He earned his BSc in Mechanical Engineering from Mizan Tepi University and an MSc in Manufacturing Engineering and Automation from Arba Minch University. 🛠️ With nine years of professional experience, Simon focuses on bridging academia and industry through innovative research, community engagement, and industry-technology transfer. 🚀 His expertise in advanced manufacturing and process optimization reflects his commitment to Ethiopia’s technological growth. 🌍

Publication Profile

scopus

Education🎓

MSc in Manufacturing Engineering and Automation (2021) – Arba Minch University BSc in Mechanical Engineering, Manufacturing Stream (2015) – Mizan Tepi University Specialized in advanced manufacturing, CNC technology, additive manufacturing, process planning, welding machines, and automation. 🤖 His academic training integrates engineering principles with cutting-edge technologies to enhance manufacturing systems. 🚀

Experience 📌

Head of Automotive Engineering Department at Arba Minch University (2016–present)  Led department operations, curriculum development, and student mentorship. Coordinated research projects bridging academic solutions with industry needs. Actively engaged in teaching advanced manufacturing technologies, workshop technology, and process optimization. Contributed to community-focused projects, enhancing education and safety in Ethiopia.

Awards and Honors 🏆

Recognized for exceptional leadership in academic program management. Received grants for innovative research projects funded by Arba Minch University.  Honored for community service initiatives improving local education and infrastructure.  Acknowledged for excellence in publishing impactful research in advanced manufacturing.

Research Focus 🔬

Focused on additive manufacturing and process optimization for energy storage, graphene composites, and pipeline applications. Specialized in thermoplastic infill patterns, laser scanning for nickel alloys, and biocomposites. Worked on sustainability, utilizing waste-derived materials for manufacturing innovations.  Published studies on CNC automation, rapid prototyping, and advanced manufacturing systems. Dedicated to developing scalable, eco-friendly, and cost-effective manufacturing solutions.

Publications 📖

1. Additive Manufacturing (3D Printing)

Graphene Enhanced PETG Optimization:

Title: Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol

Journal: Scientific Reports (2024, 14(1), 30744)

Focus: Optimizing parameters for FDM using graphene-reinforced PETG.

Citations: 0

Graphene-Reinforced PETG Impeller Production:

Title: Optimizing additive manufacturing parameters for graphene-reinforced PETG impeller production: A fuzzy AHP-TOPSIS approach

Journal: Results in Engineering (2024, 24, 103018)

Focus: Application of multi-criteria decision-making tools for PETG optimization.

Citations: 4

Thermoplastic Polyurethane for Pipeline Applications:

Title: Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications

Journal: Advances in Polymer Technology (2024)

Focus: Infill pattern optimization in AM applications.

Citations: 0

2. Laser Manufacturing

Nickel-Based Superalloys:

Title: Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy

Journal: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications (2024, 238(6), pp. 1142–1154)

Focus: Investigates laser parameters on the surface quality of nickel alloys.

Citations: 13

3. Composites and Biocomposites

Biocomposites of Jute/Bagasse/Coir/Nano TiO2:

Title: An Investigation on the Activation Energy and Thermal Degradation of Biocomposites of Jute/Bagasse/Coir/Nano TiO2/Epoxy-Reinforced Polyaramid Fibers

Journal: Journal of Nanomaterials (2022)

Focus: Studied thermal degradation of sustainable biocomposites.

Citations: 33

Conclusion

Mr. Simon Yishak demonstrates exceptional qualifications and expertise that align closely with the goals of the Research for Academic Excellence in Mechanics Award. His academic rigor, innovative research, and practical contributions to manufacturing engineering position him as a strong candidate for this prestigious recognition. By focusing on international collaborations, patent development, and expanding his research into emerging fields, Simon could further solidify his candidacy and amplify his contributions to the discipline.

ERHAN BAYSAL | Mechanical Engineering | Best Researcher Award

Mr. ERHAN BAYSAL |  Mechanical Engineering | Best Researcher Award

Lecturer at Laser Research Centre, Zonguldak Bülent Ecevit Üniversitesi, China

Erhan Baysal is a Lecturer at Bülent Ecevit University, specializing in Mechanical Engineering. With a strong background in materials science and manufacturing processes, particularly in friction welding, he has contributed to numerous academic publications. His academic journey spans various prestigious institutions, and he actively participates in research and academic projects related to material behavior, mechanical design, and welding technologies. 📚🔧👨‍🏫

Profile

scholar

Education 🎓

Master’s in Mechanical Engineering, Bülent Ecevit University, 2019 🎓Bachelor’s in Mechanical Engineering, Fırat University, 2013

Experience 🏫💻

Lecturer, Bülent Ecevit University, 2016–present 🎓Researcher in national projects on manufacturing processes 🛠️Instructor in various courses including Strength of Materials and Manufacturing Processes

Awards and Honors 🏆

Contributor to several peer-reviewed articles in international journalsPublished in prestigious conferences and journals on materials and welding technologies 📑Awarded for his contribution to applied research in friction welding and mechanical design 🌍

Research Focus🔬🔩

Erhan Baysal’s research focuses on materials science, particularly the mechanical behavior and welding of aluminum alloys using friction stir welding. He also explores deformation processes in material shaping and manufacturing optimization.

Publication  Top Notes

An Overview of Deformation Path Shapes on Equal Channel Angular Pressing” (2022)

Authors: E. Baysal, O. Koçar, E. Kocaman, U. Köklü

Journal: Metals 12 (11), 1800

Summary: This paper discusses the deformation paths formed during equal channel angular pressing (ECAP). The study focuses on how different processing parameters, such as the angle of the channels, affect the microstructure and mechanical properties of the material.

“Mechanical Behavior of a Friction Welded AA6013/AA7075 Beam” (2022)

Authors: O. Koçar, M. Yetmez, E. Baysal, H.A. Ozyigit

Journal: Materials Testing 64 (2), 284-293

Summary: This research investigates the mechanical properties of beams made from AA6013 and AA7075 aluminum alloys joined via friction welding. The study examines the mechanical behavior of the weld joint, focusing on parameters such as strength, hardness, and fracture toughness.

“A New Approach in Part Design for Friction Stir Welding of 3D-Printed Parts with Different Infill Ratios and Colors” (2024)

Authors: O. Koçar, N. Anaç, E. Baysal

Journal: Polymers 16 (13), 1790

Summary: This paper introduces a novel approach to part design for friction stir welding (FSW) of 3D-printed parts. The study evaluates how different infill ratios and colors in 3D printing affect the welding process, quality, and mechanical properties of the final product.

“Eşit Kanallı Açısal Presleme Yönteminde Kanal Açılarının ve İç Köşe Kavisinin Deformasyona Etkisinin Sonlu Elemanlar Metodu ile İncelenmesi” (2023)

Authors: E. Baysal, O. Koçar, N. Anaç, F. Darıcı

Journal: Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 38 (3), 859-873

Summary: This paper investigates the effect of channel angles and inner corner radii on deformation during equal channel angular pressing (ECAP) using finite element method (FEM) simulations. The research provides insights into how these factors influence material flow and structural integrity.

“Görüntü İşleme Teknikleri ile Rulo Sac Hassas Doğrultmada Silindir Konumlarının Belirlenmesi” (2021)

Authors: O. Koçar, S. Dikici, H. Uçar, E. Baysal

Journal: El-Cezeri 8 (2), 604-617

Summary: This article explores the use of image processing techniques to determine the cylinder positions in precision flattening of rolled sheets. The study demonstrates how computer vision can enhance manufacturing processes, particularly in achieving high precision in material deformation.

“3B Yazıcıda Üretilen Plakaların Sürtünme Karıştırma Kaynak Parametrelerinin YSA ile Tahmini” (2024)

Authors: N. Anaç, O. Koçar, E. Baysal

Journal: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 (1), 176-187

Summary: This paper presents a prediction model using artificial neural networks (ANN) to estimate the parameters for friction stir welding of 3D-printed plates. The research focuses on optimizing welding conditions to improve the quality and strength of the welded joints.

“Etial 180 Alaşımına İlave Edilen Bakırın Mikroyapı, Sertlik ve Korozyon Üzerindeki Etkisi” (2023)

Authors: E. Kocaman, E. Baysal, O. Koçar, A.S. Güldibi, S. Şirin

Journal: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 (2), 604-611

Summary: This study investigates the impact of adding copper to Etial 180 alloy, focusing on its effect on microstructure, hardness, and corrosion resistance. The findings highlight the potential improvements in material properties when copper is incorporated into the alloy.

“Barkhausen Noise as A Magnetic Nondestructive Testing Technique”

Authors: Ö. Adanur, O. Koçar, A.S. Güldibi, E. Kocaman, E. Baysal

Journal: Black Sea Journal of Engineering and Science 7 (4), 7-8

Summary: The paper explores the use of Barkhausen noise as a nondestructive testing (NDT) technique to assess the magnetic properties of materials. This method is useful in evaluating the integrity and structural health of components without causing damage.

“AA6013/AA7075 Alüminyum Malzemelerin Sürtünme Kaynağı Yöntemiyle Birleştirilmesi ve Analizi”

Authors: E. Baysal, O. Koçar, M. Yetmez, H.A. Ozyigit

Summary: This research focuses on the friction stir welding (FSW) of AA6013 and AA7075 aluminum alloys, analyzing the mechanical properties, microstructure, and joint quality achieved by this welding method.

Conclusion

Erhan Baysal has shown exceptional dedication to advancing mechanical engineering through his research and teaching. His focus on cutting-edge manufacturing technologies, coupled with his broad publication history, makes him a strong candidate for the Best Researcher Award. With further interdisciplinary integration and industry collaborations, he could significantly elevate the practical applications of his research, solidifying his role as a leading figure in the field. His ongoing work promises to continue shaping the future of mechanical engineering.