Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof. Dr. Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof at Kyrgyz State Technical University, Kyrgyzstan

🎓Prof. Dr. Ryspek Usubamatov, an esteemed academic and innovator, has contributed immensely to mechanical, industrial, and manufacturing engineering. 🌍 Born in Kyrgyzstan, he earned his Ph.D. at Bauman Moscow State Technical University and holds over 500 publications, 61 patents, and 8 books. 📚 He has led research projects globally, including in the USA, UK, and Malaysia, and mentored numerous students. 🌟 His groundbreaking work in gyroscopic theory and high-efficiency turbines reflects his dedication to sustainable innovation.

Publication Profile

orcid

Education🎓

1994-96: Certificate in English Literature, KSTU  1994: University Administration, Kansas University, USA.  1993: Doctor of Technical Sciences, National Academy of Sciences, Kyrgyzstan. 1968-72: Ph.D., MSTU 1960-66: Professional Engineer Certificate, Mechanical Engineering, MSTU.  Multiple certifications from workshops globally in engineering, composite materials, web publishing, and business coaching.

Experience 👨‍🏫

Professor at UniMAP and UPM (2002-2016).  Professor of Automation and Production, KSTU (1972-1992).  Rector of KSTU (1992-1999).  Director, International University of Kyrgyzstan (1999-2002). Expert consultant for UNESCO and INTAS, promoting global scientific collaboration. Machine Tool Engineer, Bishkek Engineering Plant (1966-1968).

Awards and Honors🏅

State Medal for Valiant Labour, Kyrgyzstan (1982). Government Medal for Excellence in Education, Kyrgyzstan (1993) Bronze Medal, ITEX, Malaysia (2009). Silver Medal, ITEX, Malaysia (2014). Order of Merit, WIAF, Korea (2012). Fellowships and memberships in AAAS, UAMAE, and global academies.  Editorial board member of multiple scientific journals.

Research Focus⚙️

Productivity Theory for Industrial Engineering. Gyroscopic effects for rotating objects. High-efficiency turbine designs. Advanced machining processes and CNC. Automation, robotics, and material handling. Innovations in vane-type turbines and combustion engines  Dynamic system design and kinematics of machines. Econometrics and engineering collaboration projects.

Publications 📖

ptimization of Machining for the Maximal Productivity Rate of the Drilling Operations
Journal: International Journal of Mathematics for Industry
Published: August 2024 | DOI: 10.1142/S2661335224500230
Contributors: Ryspek Usubamatov, Abdusamad Abdiraimov

Maximal Productivity Rate of Threading Machine Operations
Journal: International Journal of Mathematics for Industry
Published: July 2024 | DOI: 10.1142/S2661335224500199
Contributors: Ryspek Usubamatov, Darina Kurganova, Sarken Kapayeva

Optimization of Face Milling Operations by Maximal Productivity Rate Criterion
Journal: Production Engineering
Published: June 2024 | DOI: 10.1007/s11740-023-01249-9
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov, Gabdyssalyk Riza

Gyroscopic Torques Generated by a Spinning Ring Torus
Journal: Advances in Mathematical Physics
Published: January 2024 | DOI: 10.1155/admp/5594607
Contributors: Ryspek Usubamatov, John Clayton

Theory of Gyroscopic Effects for Rotating Objects
Book: Springer
Published: 2022 | DOI: 10.1007/978-3-030-99213-2

Optimization of Machining by the Milling Cutter
Preprint: December 2022 | DOI: 10.21203/rs.3.rs-2333647/v1
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov

Inertial Forces and Torques Acting on a Spinning Annulus
Journal: Advances in Mathematical Physics
Published: September 2022 | DOI: 10.1155/2022/3371936
Contributors: Ryspek Usubamatov, Sarken Kapayeva, Zine El Abiddine Fellah

Erratum: Physics of Gyroscope Nutation
Journal: AIP Advances
Published: March 2021 | DOI: 10.1063/5.0040660

Physics of Gyroscope Nutation
Journal: AIP Advances
Published: October 2019 | DOI: 10.1063/1.5099647

Productivity Theory for Industrial Engineering
Book: Taylor and Francis, London
Published: July 2018

Conclusion

This candidate is an exceptional contender for the Research for Outstanding Scientist Award, with a remarkable track record of academic excellence, professional leadership, and contributions to mechanical engineering and manufacturing technologies. Their multidisciplinary expertise, extensive publication record, and international recognition make them a strong candidate. Enhancing focus on emerging technologies and sustainability-related applications would further strengthen their candidacy and relevance for this prestigious award.

Simon Yishak | Manufacturing Engineering | Academic Excellence in Mechanics Award

Mr. Simon Yishak | Manufacturing Engineering | Academic Excellence in Mechanics Award

Lecturer at Arba Minch University, Ethiopia

🌟 Simon Yishak Kolebaye is a passionate academic leader serving as a lecturer and Head of the Automotive Engineering Department at Arba Minch University, Ethiopia, since 2016. 🎓 He earned his BSc in Mechanical Engineering from Mizan Tepi University and an MSc in Manufacturing Engineering and Automation from Arba Minch University. 🛠️ With nine years of professional experience, Simon focuses on bridging academia and industry through innovative research, community engagement, and industry-technology transfer. 🚀 His expertise in advanced manufacturing and process optimization reflects his commitment to Ethiopia’s technological growth. 🌍

Publication Profile

scopus

Education🎓

MSc in Manufacturing Engineering and Automation (2021) – Arba Minch University BSc in Mechanical Engineering, Manufacturing Stream (2015) – Mizan Tepi University Specialized in advanced manufacturing, CNC technology, additive manufacturing, process planning, welding machines, and automation. 🤖 His academic training integrates engineering principles with cutting-edge technologies to enhance manufacturing systems. 🚀

Experience 📌

Head of Automotive Engineering Department at Arba Minch University (2016–present)  Led department operations, curriculum development, and student mentorship. Coordinated research projects bridging academic solutions with industry needs. Actively engaged in teaching advanced manufacturing technologies, workshop technology, and process optimization. Contributed to community-focused projects, enhancing education and safety in Ethiopia.

Awards and Honors 🏆

Recognized for exceptional leadership in academic program management. Received grants for innovative research projects funded by Arba Minch University.  Honored for community service initiatives improving local education and infrastructure.  Acknowledged for excellence in publishing impactful research in advanced manufacturing.

Research Focus 🔬

Focused on additive manufacturing and process optimization for energy storage, graphene composites, and pipeline applications. Specialized in thermoplastic infill patterns, laser scanning for nickel alloys, and biocomposites. Worked on sustainability, utilizing waste-derived materials for manufacturing innovations.  Published studies on CNC automation, rapid prototyping, and advanced manufacturing systems. Dedicated to developing scalable, eco-friendly, and cost-effective manufacturing solutions.

Publications 📖

1. Additive Manufacturing (3D Printing)

Graphene Enhanced PETG Optimization:

Title: Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol

Journal: Scientific Reports (2024, 14(1), 30744)

Focus: Optimizing parameters for FDM using graphene-reinforced PETG.

Citations: 0

Graphene-Reinforced PETG Impeller Production:

Title: Optimizing additive manufacturing parameters for graphene-reinforced PETG impeller production: A fuzzy AHP-TOPSIS approach

Journal: Results in Engineering (2024, 24, 103018)

Focus: Application of multi-criteria decision-making tools for PETG optimization.

Citations: 4

Thermoplastic Polyurethane for Pipeline Applications:

Title: Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications

Journal: Advances in Polymer Technology (2024)

Focus: Infill pattern optimization in AM applications.

Citations: 0

2. Laser Manufacturing

Nickel-Based Superalloys:

Title: Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy

Journal: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications (2024, 238(6), pp. 1142–1154)

Focus: Investigates laser parameters on the surface quality of nickel alloys.

Citations: 13

3. Composites and Biocomposites

Biocomposites of Jute/Bagasse/Coir/Nano TiO2:

Title: An Investigation on the Activation Energy and Thermal Degradation of Biocomposites of Jute/Bagasse/Coir/Nano TiO2/Epoxy-Reinforced Polyaramid Fibers

Journal: Journal of Nanomaterials (2022)

Focus: Studied thermal degradation of sustainable biocomposites.

Citations: 33

Conclusion

Mr. Simon Yishak demonstrates exceptional qualifications and expertise that align closely with the goals of the Research for Academic Excellence in Mechanics Award. His academic rigor, innovative research, and practical contributions to manufacturing engineering position him as a strong candidate for this prestigious recognition. By focusing on international collaborations, patent development, and expanding his research into emerging fields, Simon could further solidify his candidacy and amplify his contributions to the discipline.

Yurong Wang | Additive manufacturing | Best Researcher Award

Mr. Yurong Wang | Additive manufacturing | Best Researcher Award

Mr at  Tsinghua University, China

A PhD candidate in Mechanical Engineering at Sichuan University, this researcher specializes in additive manufacturing, powder bed fusion, and advanced material processes. With a passion for material characterization and innovation, they strive to advance mechanical engineering technologies.

Professional Profiles:

orcid

🎓 Education

PhD Student (Mechanical Engineering) – Sichuan UniversityMaster’s (Mechanical Engineering) – Tsinghua University & Guangxi UniversityBachelor’s (Mechanical and Vehicle Engineering) – Hunan University

💼 Experience

Research assistant in additive manufacturing projects at Sichuan UniversityIntern at advanced materials lab, Tsinghua UniversityUndergraduate researcher in mechanical design at Hunan University

🏆 Awards and Honors

Best Graduate Research Award – Sichuan UniversityOutstanding Master’s Thesis Award – Tsinghua UniversityInnovation Excellence Award – Guangxi University

🔍 Research Focus

Additive Manufacturing 🛠️Powder Bed Fusion ⚙️Advanced Material Processes 🔩Material Characterization 🧪

✍️Publications Top Note 

Strengthened Microstructure and Mechanical Properties of Austenitic 316L Stainless Steels by Grain Refinement and Solute Segregation

Journal of Materials Research and Technology (2025)
DOI: 10.1016/j.jmrt.2024.12.086
Authors: Yurong Wang, Buwei Xiao, Xiaoyu Liang, Huabei Peng, Jun Zhou, Feng Lin

This study explores how refining grain structure and promoting solute segregation enhances the mechanical properties of 316L stainless steel. The findings reveal improved strength and toughness, making it a promising material for advanced engineering applications.

2. Effect of Laser Energy on Anisotropic Material Properties of a Novel Austenitic Stainless Steel with a Fine-Grained Microstructure
Journal of Manufacturing and Materials Processing

This paper investigates the influence of laser energy on the anisotropic properties of fine-grained austenitic stainless steel. The research highlights how laser processing parameters can optimize material performance, contributing to advancements in additive manufacturing.

Conclusion

This individual is highly suitable for the Best Researcher Award, as they have a strong educational background, expertise in cutting-edge research areas, and the potential for impactful contributions to additive manufacturing and advanced materials science. They demonstrate the qualities of a forward-thinking, innovative researcher poised to make significant strides in their field. With continued focus on publishing high-quality research and fostering industry partnerships, their potential to achieve even greater success and recognition is substantial.

 

Long Chen | Carbon Fiber Reinforced Plastic Laser drilling | Best Researcher Award

Dr. Long Chen | Carbon Fiber Reinforced Plastic Laser drilling | Best Researcher Award

Research Associate at  Huazhong University of Science and Technology, China

🎓 Long Chen is a Research Associate at Huazhong University of Science and Technology and Deputy Director of the R&D Center at Zhejiang Huagong Guanggrun Intelligent Equipment Technology Co., Ltd. (since 2021). 🔬 His research focuses on laser processing technology for carbon fiber composite materials (CFRP). 💡 Long has developed advanced laser processing equipment used in critical aerospace components like satellite antenna covers, engine casings, and missile shells. 📚 He has authored numerous SCI-indexed papers and holds five authorized patents among 14 applications. 🌟 Long actively participates in national and provincial research projects, making significant contributions to the field of intelligent manufacturing.

Professional Profiles:

Education  🎓

PhD in Engineering, Huazhong University of Science and Technology, 2019–2024. 🎓 Bachelor’s Degree in Mechanical Engineering, Top-tier Chinese Institution (Year N/A). 📜 Successfully defended doctoral thesis in 2024 on CFRP laser processing technology. 📚 Academic expertise covers mechanisms of laser interaction with advanced materials, intelligent equipment design, and status monitoring.

Experience  💼

Deputy Director, Zhejiang Huagong Guanggrun R&D Center (2021–present). 💡 Spearheaded innovation funds for CFRP laser processing. 📊 Led 12 enterprise technology development projects. 🌐 Participated in R&D for significant aerospace engineering equipment, contributing to an award-winning project.

Awards and Honors  🏆

First Prize for Science and Technology Progress, Hubei Province, for contributions to aerospace engineering. 🌟 Recognition for advancements in CFRP high-performance manufacturing. 📜 Active member of the China Mechanical Engineering Society and China Society for Composite Materials.

Research Focus  🔬

Exploring acoustic emission signals in CFRP laser cutting, unveiling mechanisms of thermal ablation and mechanical denudation. 📈 Developed RIPL scanning, improving cutting efficiency by up to 33.9%. 🚀 Applications in aerospace and high-performance manufacturing.

 

✍️Publications Top Note :

Alpinetin ameliorates bleomycin-induced pulmonary fibrosisBiomedicine and Pharmacotherapy (2024): 2 citations.

🫁 Associations of prior pulmonary tuberculosis with incident COPDTherapeutic Advances in Respiratory Disease (2024): 0 citations.

🌍 The incidence of tuberculous pleurisy in mainland ChinaFrontiers in Public Health (2023): 4 citations.

📊 Global trends of NAFLD in 204 countriesJMIR Public Health and Surveillance (2022): 22 citations.

🏥 12-month systemic consequences of COVID-19 in discharged patientsClinical Infectious Diseases (2022): 47 citations.

🏥 Global burden of infective endocarditis (1990–2019)Frontiers in Medicine (2022): 69 citations.

🔬 Global burden of urinary tract infections (1990–2019)World Journal of Urology (2022): 73 citations.

🌍 Global trends of maternal infections (1990–2019)BMC Infectious Diseases (2021): 20 citations.

🧮 CAPRL Scoring System for COVID-19 mortality predictionInfectious Diseases and Immunity (2021): 0 citations.

🧪 Immunological characteristics in Type 2 diabetes among COVID-19 patientsFrontiers in Endocrinology (2021): 30 citations.

Conclusion

Long Chen demonstrates an exceptional track record in innovative research, industrial applications, and scholarly contributions to the field of CFRP laser processing. His unique ability to translate research into practical solutions for high-performance manufacturing makes him a strong contender for the Best Researcher Award. Addressing the areas for improvement, particularly in global collaborations and public outreach, could further solidify his candidacy as a leader in advanced manufacturing research.

Jingfei Yin | high performance machining | Best Researcher Award

Assoc Dr.  Nanjing university of Aeronautics and Astronautics, china

Dr. Jingfei Yin is an Associate Professor at Nanjing University of Aeronautics and Astronautics with a Ph.D. from Dalian University of Technology. His research focuses on high-efficiency and precision machining of hard-to-machine materials, high-speed machining, and laser detection of subsurface damage. He has led or participated in over 10 national and provincial projects, published more than 20 academic papers, holds six patents, and has over 10 patents in progress. Dr. Yin is an editorial member of several high-impact journals and a senior member of the Chinese Mechanical Engineering Society. He is recognized for his pioneering work in ultrasonic-assisted drilling and subsurface damage detection.

 

Professional Profiles:

🎓 Academic and Professional Background

Dr. Jingfei Yin earned his PhD from Dalian University of Technology, under the supervision of Prof. Bi Zhang (CIRP Fellow). Currently, he serves as an Associate Professor at Nanjing University of Aeronautics and Astronautics. His research spans high-efficiency and precision machining of hard-to-machine materials, high-speed machining, and laser detection of subsurface damage. He has led or contributed to over 10 national and provincial projects, including those funded by the National Natural Science Foundation and the National Sci. & Tech. Major Project. Dr. Yin has published over 20 academic papers and is an invited reviewer for several high-level journals.

🚀 Research and Innovations:

🛠 Completed/Ongoing Research Projects:Completed three projects funded by the China Postdoctoral Foundation and Jiangsu Province Postdoctoral Foundation.Currently managing five ongoing projects from the National Natural Science Foundation of China, The Science Center for Gas Turbine, and Nanjing University of Aeronautics and Astronautics.📊 Citation Index: 12🏗 Consultancy/Industry Projects: Two industry projects.📚 Books Published (ISBN): None.🔑 Patents Published/Under Process:Published six patents with more than 10 patents under process.📝 Journals Published (SCI, Scopus, etc.): Over 20 articles.

📰 Editorial Appointments:

Early editorial member of the International Journal of Hydromechatronics (JIF: 5.3), Nanotechnology and Precision Engineering (JIF: 3.5), and two other Chinese journals (SCIE indexed).

🎓 Professional Memberships:

Senior member of the Chinese Mechanical Engineering Society and a member of the Chinese Society of Aeronautics and Astronautics.

🔬 Areas of Research:

High-efficiency and precision machining of hard-to-machine materials, high-speed machining, and laser detection of subsurface damage.

🌟 Contributions

Pioneered the mechanical machining of high-frequency ultrasonic-assisted drilling, making submillimeter holes in superhard ceramic matrix composites. Efficiency is elevated up to 10 times compared to current laser machining.Discovered the “skin effect” of subsurface damage distribution in materials subjected to high-speed machining, where damage depth decreases with increasing machining speed.Developed a novel non-destructive method of polarized laser scattering for detecting subsurface damage in materials with a sensitivity as high as 0.1 μm in depth, using electromagnetic scattering theory to clarify the interaction between laser polarization and subsurface damages.

✍️ Self-Declaration:

I authenticate that to the best of my knowledge, the information given in this form is correct and complete. If at any time, I am found to have concealed any material information, my application shall be liable to be summarily terminated without notice. I have read the terms and conditions and other policies of the Awards and agree to them.

Dr. Jingfei Yin’s Research for the Best Researcher Award

Strengths for the Award:

  1. Innovative Research Contributions: Dr. Jingfei Yin has made significant contributions to the field of precision machining, particularly in the high-efficiency machining of hard-to-machine materials. His work on high-frequency ultrasonic-assisted drilling, which improves the efficiency of creating submillimeter holes in ceramic matrix composites by tenfold compared to current laser machining methods, is groundbreaking. This demonstrates his ability to push the boundaries of existing technologies.
  2. Expertise in Subsurface Damage Detection: Dr. Yin’s research on the “skin effect” of subsurface damage distribution in high-speed machining and the interaction between laser polarization and subsurface damage highlights his deep understanding of the intricate processes involved in machining. His development of a novel non-destructive method for detecting subsurface damage with high sensitivity is a testament to his innovative approach to solving complex problems in material science.
  3. Leadership in National and Provincial Projects: Dr. Yin has successfully led and participated in more than ten national and provincial research projects, including those funded by the National Natural Science Foundation and the National Science & Technology Major Project. His leadership in these projects underlines his capability to manage large-scale research initiatives and contribute valuable insights to the field.
  4. Scholarly Contributions: With over 20 academic papers published in reputable journals and six patents already published, Dr. Yin’s scholarly output is commendable. His work is recognized and cited by peers, as indicated by his citation index of 12, further affirming his influence in the field of precision machining.
  5. Editorial and Peer-Review Roles: Serving as an editorial member for international journals like the International Journal of Hydromechatronics and Nanotechnology and Precision Engineering, Dr. Yin is well-respected in the academic community. His role in these journals showcases his expertise and his commitment to advancing research in his areas of specialization.

Areas for Improvement:

  1. Collaborations: While Dr. Yin has demonstrated substantial individual achievements, expanding his collaborative efforts, both nationally and internationally, could further enhance his research impact. Engaging in interdisciplinary collaborations or partnerships with industry could open new avenues for research and practical applications of his work.
  2. Publication in High-Impact Journals: Although Dr. Yin has published extensively, further increasing the number of publications in higher-impact journals would bolster his academic profile. Targeting top-tier journals in the fields of material science and precision engineering could help in gaining wider recognition for his work.
  3. Expansion of Research Areas: Dr. Yin’s current research focus is highly specialized, which is a strength, but expanding into related areas such as smart manufacturing, additive manufacturing, or automation in machining could diversify his research portfolio and potentially lead to more groundbreaking discoveries.

 

✍️Publications Top Note :

High-Performance Grinding of Ceramic Matrix Composites

Journal: Nanotechnology and Precision Engineering

Year: 2024

Citations: 0

Machinability of Submillimeter Holes in Ceramic Matrix Composites by High-Frequency Ultrasonic Vibration-Assisted Drilling

Journal: Journal of Materials Processing Technology

Year: 2024

Citations: 1

Experimental Study of Single Grain Grinding for SiCf/SiC Ceramic Matrix Composites

Journal: Zhongguo Jixie Gongcheng/China Mechanical Engineering

Year: 2022

Citations: 4

Rational Discussion on Material Removal Mechanisms and Machining Damage of Hard and Brittle Materials

Journal: Jixie Gongcheng Xuebao/Journal of Mechanical Engineering

Year: 2022

Citations: 5

Feasibility of Polarized Laser Scattering in Detecting the Grinding-Induced Subsurface Damage in SiCf/SiC Ceramic Matrix Composite

Journal: Composite Structures

Year: 2022

Citations: 8

Sensitivity of Polarized Laser Scattering Detection to Subsurface Damage in Ground Silicon Wafers

Journal: Materials Science in Semiconductor Processing

Year: 2022

Citations: 2

Influence of Alumina Abrasive Tool Wear on Ground Surface Characteristics and Corrosion Properties of K444 Nickel-Based Superalloy

Journal: Chinese Journal of Aeronautics

Year: 2022

Citations: 10

Generation Mechanism Modeling of Surface Topography in Tangential Ultrasonic Vibration-Assisted Grinding with Green Silicon Carbide Abrasive Wheel

Journal: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Year: 2022

Citations: 10

Edge Chipping Characteristics in Grinding SiCf/SiC Composite

Journal: Ceramics International

Year: 2022

Citations: 15

Depolarization of Surface Scattering in Polarized Laser Scattering Detection for Machined Silicon Wafers

Journal: Precision Engineering

Year: 2022

Citations: 7

Conclusion:

Dr. Jingfei Yin is a highly qualified candidate for the Best Researcher Award. His innovative contributions to the field of high-performance and precision machining, particularly his pioneering work on ultrasonic-assisted drilling and subsurface damage detection, position him as a leader in his field. While there are opportunities for expanding his collaborative efforts and diversifying his research areas, his existing accomplishments make him a strong contender for the award. His research not only advances the scientific understanding of machining processes but also has practical implications for improving efficiency and quality in manufacturing.

Xiangyan Zhang | wafer defect detection | Best Researcher Award

Dr. Xiangyan Zhang | wafer defect detection | Best Researcher Award

Dr. Beijing University of Posts and Telecommunications , China

Xiangyan Zhang, a Ph.D. student at the School of Intelligent Engineering and Automation, Beijing University of Posts and Telecommunications, has a robust academic background with a Master of Engineering degree from Beijing University of  Science and Technology (2023). His research focuses on wafer defect detection and machine vision, with significant contributions including DMWMNet, a dual-branch multi-level convolutional network achieving high performance in wafer map defect detection. Zhang has published 4 SCI papers, 2 EI conference papers, holds 2 invention patents, and 3 software copyrights. He collaborates with the China Academy of Engineering Physics

 

Professional Profiles:

Orcid

Academic and Professional Background 📚👩‍🎓

In June 2023, I was awarded a Master of Engineering degree from Beijing University of Science and Technology, and in September 2023, I commenced my Ph.D. studies at Beijing University of Posts and Telecommunications. To date, I have published 4 SCI papers, 2 EI conference papers, granted 2 invention patents, and obtained 3 software copyrights.

Research and Innovations 🔬💡

Completed/Ongoing Research Projects 🚀Vision-based robotic grasp detection projectWafer defect detection project

Citation Index 📑

Zhang, X., Jiang, Z., Yang, H., Mo, Y., Zhou, L., Zhang, Y., Li, J., Wei, S. (2024). DMWMNet: A novel dual-branch multi-level convolutional network for high-performance mixed-type wafer map defect detection in semiconductor manufacturing. Computers in Industry, 161, 104136

✍️Publications Top Note :

Patent Authorization Number: ZL202210817429.4
A six-degree-of-freedom grasping detection algorithm based on semantic segmentation networks.

Patent Application Number: 202310654572.0
A grasping detection network based on RGBD images and semantic segmentation for residual fitting.

Zhang, Xiangyan, et al. (2024): DMWMNet: A novel dual-branch multi-level convolutional network for high-performance mixed-type wafer map defect detection in semiconductor manufacturing. Computers in Industry, 161, 104136.

Zhang Qinjian†, Zhang Xiangyan†, et al. (2022): TMSCNet: A three-stage multi-branch self-correcting trait estimation network for RGB and depth images of lettuce. Frontiers in Plant Science, 13.

Wu Yalin, Zhang Qinjian, Zhang Xiangyan, et al. (2022):* Novel binary logistic regression model based on feature transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems. Future Generation Computer Systems-the International Journal of Escience, 129: 1-12.

Zhang Wu, Li Haiyuan, Zhang Xiangyan, et al. (2021):* Research progress and development trend of surgical robot and surgical instrument arm. International Journal of Medical Robotics and Computer Assisted Surgery, 17(5).

Zhang Xiangyan, Li Haiyuan, et al. (2021):* Kinematics Analysis and Grasping Simulation of a Humanoid Underactuated Dexterous Hand. 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO): 55-60.

Zhang Qinjian, Zhang Xiangyan, Li Haiyuan (2022):* A Grasp Pose Detection Network Based on the DeepLabv3+ Semantic Segmentation Model. International Conference on Intelligent Robotics and Applications (ICIRA): 747-758. (EI)