Arezoo Faridzadeh | Immunology | Best Researcher Award

Dr. Arezoo Faridzadeh | sustainable building construction material | Best Researcher Award

Immunologist at Mashhad University of Medical Sciences,Iran ,Iran

A dedicated Postdoctoral Candidate specializing in Immunology and Rheumatology at Mashhad University of Medical Sciences (MUMS), this researcher excels in innovative immunological studies. With an MD and Ph.D. from MUMS, they bring a decade of expertise to cutting-edge research. Their academic journey is complemented by advanced lab techniques, software proficiency, and active participation in global congresses, reflecting a commitment to understanding autoimmune diseases and COVID-19 immunopathology.

 

Publication Profile

scholar

Education  🎓

Postdoc in Immunology & Rheumatology | Mashhad University of Medical Sciences (MUMS), 2023-PresentPh.D. in Immunology | Mashhad University of Medical Sciences (MUMS), 2017-2022 (GPA: 4/4)MD in Medicine | Mashhad University of Medical Sciences (MUMS), 2009-2017 (GPA: 4/4)High School Diploma | National Organization for Development of Exceptional Talents, 2005-2008

Experience  🔬

Expert in PCR, Flow Cytometry, Western Blotting, and ELISAReviewer for health sciences journals with 2 ISI articlesDelivered research contributions in COVID-19 immunology and probiotics for autoimmune diseasesAttended major congresses like ICIA 2023 and Euro-Global Summit 2024

Awards and Honors 🏆

Full scholarship for MD-Ph.D. in Immunology at MUMSRanked 1st in comprehensive Ph.D. immunology exams (2019)Secured funding for 10+ immunological studiesKey contributor to COVID-19 National Research Plan

Research Focus  🧬

Evaluating probiotic effects on autoimmune diseases (e.g., lupus, rheumatoid arthritis)Investigating gene polymorphisms in COVID-19 severityExploring immunological mechanisms in allergies and systemic diseasesDeveloping novel insights into autoimmune and inflammatory conditions

Publication  Top Notes

 

“Multisystem Inflammatory Syndrome and Autoimmune Diseases Following COVID-19: Molecular Mechanisms and Therapeutic Opportunities” Frontiers in Molecular Biosciences, 2022

“Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender” Frontiers in Neuroscience, 2022

“The Role of Melatonin as an Adjuvant in the Treatment of COVID-19: A Systematic Review” Heliyon, 2022

“Venous Thromboembolism in Viral Diseases: A Comprehensive Literature Review” Health Science Reports, 2023

Conclusion:

The candidate’s profile clearly demonstrates the potential to be an outstanding Best Researcher Award nominee. With an exceptional academic background, ongoing contributions to critical immunological research, and active participation in both national and international research communities, the candidate is highly deserving of recognition. However, enhancing the global impact of their research through additional publications and expanding their focus into broader immunology topics could further solidify their position as a leading researcher. Nonetheless, the candidate’s current achievements already place them among the top in their field.

Rupali Tiwari | sustainable building construction material | Best Researcher Award

Dr. Rupali Tiwari | sustainable building construction material | Best Researcher Award

Scientific researcher at Technical University in zvolen, Slovakia

🌟 Enthusiastic researcher with expertise in thermophysical analysis and wood thermal insulation. 🧪 Skilled in advanced techniques like Hot Disk 2500s, fostering sustainable practices. 🌍 Active contributor to international conferences and academic communities. 📚 Passionate about innovative research in materials science and eco-friendly solutions. 🎓

 

Publication Profile

scholar

Education🎓 

Ph.D. in Thermal Properties, advancing knowledge of sustainable materials. M.Sc. in Materials Science, specializing in innovative thermal property analysis. B.Sc. in Physics, laying a strong foundation in scientific methodologies  Continuing education through workshops and seminars in advanced materials.

Experience👨‍🏫 

Postdoctoral Scholar at Technical University in Zvolen: Thermal property measurements, lectures, and conferences.  Research Assistant: Thermophysical analysis for sustainable construction solutions. Academic Lecturer: Delivering knowledge to BSc and MSc students on material properties.  International Collaborator: Active in global projects on eco-friendly innovations.

Awards and Honors🏆 

Best Paper Award for contributions to sustainable materials research. Recognized Speaker at international conferences on thermal properties  Honored for innovations in thermophysical parameter analysis. Recipient of research grants for eco-friendly construction projects.

Research Focus🌱

Eco-friendly particleboards and wood as thermal insulators.Analysis of thermophysical parameters using Hot Disk and Pulse Transient methods. Historical wood analysis for cultural heritage preservation.  Innovations in sustainable building materials and construction solutions.

Publication  Top Notes

 

Thermal Analysis of Rocks and Building Materials

Non-planar Carbonate Rock Surfaces
📜 Title: The non-planar surface of carbonate rock sample affecting the behaviour of thermal response and the measurement of thermophysical parameters by Pulse Transient Technique.
📚 Journal: Thermal Science and Engineering Progress (2021).
🔍 Focus: Investigated how surface irregularities influence thermal behavior during parameter measurement.
👥 Collaborators: V. Boháč, P. Dieška, G. Goetzl.
🔗 Citations: 11.

Limestone Thermal Properties
📜 Title: Thermal properties of limestone rock by pulse transient technique using slab model accounting for the heat transfer coefficient and heat capacity of heat source.
📚 Journal: AIP Conference Proceedings (2020).
🔍 Focus: Explored slab model application for precise thermophysical measurements.
🔗 Citations: 7.

Sustainable Building Envelopes
📜 Title: Investigation of thermophysical properties of Turkey oak particleboard for sustainable building envelopes.
📚 Journal: Developments in the Built Environment (2023).
🔍 Focus: Analyzed particleboard properties for eco-friendly construction.
🔗 Citations: 5.

Innovations in Methodologies

Carbonate Rock Thermophysical Models
📜 Title: Thermophysical Parameters of Carbonate Rock estimated by Slab Model Developed for Pulse Transient Technique.
📚 Journal: Measurement Science Review (2020).
🔍 Focus: Developed slab models to enhance thermophysical parameter accuracy.
🔗 Citations: 4.

Uncertainty Analysis of Pulse Transient Models
📜 Title: Uncertainty Analysis of Pulse Transient Model Accounting Thermal Contact Effect.
📚 Conference: 12th International Conference on Measurement (2019).
🔍 Focus: Evaluated model reliability under thermal contact variations.
🔗 Citations: 1.

Advancements in Sustainable Wood and Particleboards

Historical Wood Analysis
📜 Title: Investigation of thermophysical parameters of historical fir wood using hot disk method under room ambience.
📚 Journal: AIP Conference Proceedings (2024).
🔍 Focus: Studied historical fir wood for restoration and heritage preservation.
🔗 Citations: 1.

Low-Density Alder Wood Properties
📜 Title: Thermophysical properties of low-density Alder wood (Alnus cordata Loisel) under room ambience.
📚 Journal: AIP Conference Proceedings (2023).
🔍 Focus: Evaluated wood properties for thermal applications.
🔗 Citations: 1.

Thermal Properties of Oak Boards
📜 Title: Thermal properties of Oak high density board measured by the pulse transient method for different heat pulse energy.
📚 Journal: AIP Conference Proceedings (2023).
🔍 Focus: Investigated how energy variations affect board properties.
🔗 Citations: 1.

Siberian Larch Wood Properties
📜 Title: Effect of thermo-vacuum modification on selected chemical, physical, and mechanical properties of Siberian larch (Larix sibirica L.) wood.
📚 Journal: Wood Material Science & Engineering (2023).
🔍 Focus: Analyzed thermo-vacuum modifications on larch wood.
🔗 Citations: 3.

Pulse Transient Technique for Concrete
📜 Title: Thermophysical properties of concrete measured by the pulse transient method using slab and cuboid models.
📚 Journal: AIP Conference Proceedings (2020).
🔍 Focus: Compared models for measuring concrete’s thermal properties.
🔗 Citations: 2.

Energy Storage in Natural Materials
📜 Title: The development of physical models and methods for measuring the thermal properties of natural materials suitable for the energy storage of the thermal energy in the earth’s crust.
📚 Journal: Self-published Research (2021).
🔍 Focus: Explored natural materials for geothermal energy storage.
🔗 Citations: 2.

 

Conclusion

The candidate stands out as a strong contender for the Best Researcher Award due to their innovative research, dedication to sustainability, and significant academic contributions. Their strengths in utilizing cutting-edge methodologies and contributing to eco-friendly construction practices make them an exemplary leader in their field. Addressing areas for improvement, such as expanding the scope of research and enhancing public engagement, could further amplify their impact. Nonetheless, their accomplishments and commitment to sustainable innovation position them as a deserving recipient of this prestigious recognition.

Juan Bai | Materials and Structures | Women Researcher Award

Dr.  Queensland university of technology, Australia

Dr. Bai J. is an ARC DECRA Fellow and Lecturer at Queensland University of Technology, with a strong background in material physics and chemistry. Their research is centered on designing and synthesizing functional nanostructured materials for electrochemistry and energy conversion, particularly in fuel cells and electrocatalysis. Dr. Bai has published 24 papers in leading SCI journals such as Advanced Materials and ACS Energy Letters. Recognized for their contributions, they have received prestigious awards, including the Australian Research Council DECRA and Discovery Projects awards. Dr. Bai holds a Ph.D. from Shaanxi Normal University and has extensive expertise in electrochemical energy storage and conversion devices.

Professional Profiles:

 

🎓 Education

Feb. 2024 – Present:
ARC DECRA Fellow/Lecturer, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.Apr. 2020 – Jan. 2024:
Postdoc in Electrocatalysis, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.
Supervisors: Prof. Ziqi Sun, Jun MeiSep. 2016 – Jun. 2019:
Ph.D. in Material Physics and Chemistry, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China.
Supervisors: Prof. Yu Chen, Jinghui ZengSep. 2012 – Jun. 2015:
M.S. in Physical Chemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
Supervisors: Prof. Dongmei Sun, Yu Chen, Tianhong LuSep. 2008 – Jun. 2012:
B.S. in Science Education, Department of Applied Chemistry, Yuncheng University, Yuncheng, China.

🔬 Research Objectives

My research is centered on the design and synthesis of functional nanostructured materials for applications in electrochemistry and energy conversion devices. Key areas of focus include:Anodic and Cathodic Reactions of Fuel Cells: ORR, MOR, EOR, and FAORElectrocatalysts: Noble metal-based (Pt, Pd, Rh) nanoparticles for HER, OER, and NRRAs the first/co-first/corresponding author, I have published 24 papers in top-tier SCI Journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials.

🏆 Awards and Honors

2023: Australian Research Council Discovery Early Career Researcher Award (DECRA) – $448,407.002023: Australian Research Council Discovery Projects – $404,530.002018: National Scholarship for Graduate Students (Ph.D.)2017: Research Individual Award by Shaanxi Normal University2017: Ji-Xue Scholarship by Shaanxi Normal University2016: Yuan-Ding Scholarship by Shaanxi Normal University2015: Excellent Student Award by Nanjing Normal University

Strengths for the Award

  1. Extensive Research Experience: The candidate has a strong background in material physics and chemistry, with a focus on nanostructured materials and their applications in electrochemical energy conversion. This expertise is highly relevant to the award, as it demonstrates a deep understanding of a critical field in modern science.
  2. Publication Record: With 24 papers published in high-impact SCI journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials, the candidate has established herself as a leading researcher in her field. This prolific publication record underscores her ability to contribute original and significant research to the scientific community.
  3. Award and Recognition: The candidate has received prestigious awards, including the 2023 Australian Research Council Discovery Early Career Researcher Award (DECRA) and substantial research funding. These accolades reflect her recognized potential and achievements within the scientific community.
  4. Research Focus on Sustainability: The candidate’s work on electrocatalysts and fuel cells, especially in the context of sustainable energy, aligns with global priorities in renewable energy and environmental protection. This makes her research not only innovative but also socially and environmentally impactful.
  5. Professional Skills: The candidate has demonstrated a high level of expertise in experimental techniques, theoretical knowledge, and the use of advanced instrumentation. These skills are essential for conducting cutting-edge research in electrochemistry and material science.

Areas for Improvement

  1. Broader Impact and Outreach: While the candidate has an impressive academic and research background, there is limited information on her involvement in outreach activities, mentoring, or promoting women in science. Increasing visibility and engagement in these areas could enhance her candidacy for a Women Researcher Award, which often considers contributions beyond academic achievements.
  2. Interdisciplinary Collaboration: While the candidate’s research is highly specialized, further collaboration across disciplines could lead to broader applications of her work and increase its overall impact. Engaging in interdisciplinary projects or collaborations with industry could further elevate her profile.

 

✍️Publications Top Note :

Nanocatalysts for Electrocatalytic Oxidation of Ethanol
Authors: J. Bai, D. Liu, J. Yang, Y. Chen
Journal: ChemSusChem, 12(10), 2117-2132, 2019
Citations: 170
🧪 Focus: Ethanol oxidation using nanocatalysts.

Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers
Authors: G.R. Xu, J. Bai, L. Yao, Q. Xue, J.X. Jiang, J.H. Zeng, Y. Chen, J.M. Lee
Journal: ACS Catalysis, 7(1), 452-458, 2017
Citations: 147
🔋 Focus: Hydrogen evolution reaction.

Bimetallic Platinum–Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction
Authors: J. Bai, X. Xiao, Y.Y. Xue, J.X. Jiang, J.H. Zeng, X.F. Li, Y. Chen
Journal: ACS Applied Materials & Interfaces, 10(23), 19755-19763, 2018
Citations: 145
⚗️ Focus: Platinum-rhodium alloy for ethanol oxidation.

Atomically Ultrathin RhCo Alloy Nanosheet Aggregates for Efficient Water Electrolysis in Broad pH Range
Authors: Y. Zhao, J. Bai, X.R. Wu, P. Chen, P.J. Jin, H.C. Yao, Y. Chen
Journal: Journal of Materials Chemistry A, 7(27), 16437-16446, 2019
Citations: 143
🌊 Focus: Water electrolysis using RhCo alloy nanosheets.

Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts Toward Oxygen Reduction Reaction in Alkaline Media
Authors: Q. Xue, J. Bai, C. Han, P. Chen, J.X. Jiang, Y. Chen
Journal: ACS Catalysis, 8(12), 11287-11295, 2018
Citations: 133
🧪 Focus: Oxygen reduction reaction in alkaline media.

Polyethyleneimine Functionalized Platinum Superstructures: Enhancing Hydrogen Evolution Performance by Morphological and Interfacial Control
Authors: G.R. Xu, J. Bai, J.X. Jiang, J.M. Lee, Y. Chen
Journal: Chemical Science, 8(12), 8411-8418, 2017
Citations: 115
⚛️ Focus: Hydrogen evolution through platinum superstructures.

Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies
Authors: J. Bai, G.R. Xu, S.H. Xing, J.H. Zeng, J.X. Jiang, Y. Chen
Journal: ACS Applied Materials & Interfaces, 8(49), 33635-33641, 2016
Citations: 96
🔬 Focus: Rhodium nanosheet for catalytic applications.

Molybdenum‐Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution
Authors: J. Bai, J. Mei, T. Liao, Q. Sun, Z.G. Chen, Z. Sun
Journal: Advanced Energy Materials, 12(5), 2103247, 2022
Citations: 87
Focus: Oxygen evolution in cobalt.

One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction
Authors: S.H. Han, J. Bai, H.M. Liu, J.H. Zeng, J.X. Jiang, Y. Chen, J.M. Lee
Journal: ACS Applied Materials & Interfaces, 8(45), 30948-30955, 2016
Citations: 85
🌍 Focus: Catalytic reduction of hexavalent chromium.

Glycerol Oxidation Assisted Electrocatalytic Nitrogen Reduction: Ammonia and Glyceraldehyde Co-Production on Bimetallic RhCu Ultrathin Nanoflake Nanoaggregates
Authors: J. Bai, H. Huang, F.M. Li, Y. Zhao, P. Chen, P.J. Jin, S.N. Li, H.C. Yao, J.H. Zeng
Journal: Journal of Materials Chemistry A, 7(37), 21149-21156, 2019
Citations: 84

Conclusion

The candidate is exceptionally well-suited for the Women Researcher Award, given her extensive research experience, strong publication record, and recognized achievements in the field of electrochemistry and materials science. Her work is not only innovative but also highly relevant to global challenges, particularly in sustainable energy. To further strengthen her candidacy, the candidate might consider expanding her impact through outreach, mentoring, and interdisciplinary collaboration.