Mohammadmahdi Amini | Structural health monitoring | Best Researcher Award

Mr. Mohammadmahdi Amini | Structural health monitoring | Best Researcher Award

Innovation & Technology Manager at Laskaridis Shipping Co. LTD, Greece

🎓 Mohammadmahdi Amini, a skilled BIM Modeler born in 1995, has over 3 years of professional expertise in Revit-based Building Information Modeling (BIM). 🌍 Based in Damghan, Semnan, Iran, he has authored three Q1 Elsevier journal papers exploring the effects of magnetic fields on concrete properties. 🏗️ Proficient in Autodesk Revit, AutoCAD, and advanced design software, Mohammadmahdi excels in architectural design, construction documentation, and quantity surveying. ✍️ Fluent in English with an IELTS score of 6, he thrives in collaborative environments, showcasing a passion for innovative civil engineering solutions.

Publication Profile

orcid

Education🎓

Mohammadmahdi holds a Bachelor’s degree in Civil Engineering from Semnan University, Iran (2014–2019). 🏫 Specializing in structural analysis and concrete technologies, he developed a foundational understanding of construction methodologies and project management. 📚 With a GPA of 13.73, his academic journey laid the groundwork for his advanced research in magnetic fields’ effects on concrete, culminating in contributions to high-impact journals. ✨ Semnan University was instrumental in shaping his technical and analytical abilities, inspiring his pursuit of excellence in BIM modeling and civil engineering research.

Experience 💼

As a BIM Modeler at Agourconstruction (Dec 2020–Feb 2024), Mohammadmahdi specialized in Revit-based architectural drafting, quantity surveying, and cost estimation. 📊 His role extended to supervision assistance and resident engineering, ensuring project execution met quality standards. 🏗️ With a keen eye for detail, he collaborated with multidisciplinary teams to deliver efficient construction documentation. ✨ Leveraging his Revit and AutoCAD expertise, he optimized workflows and developed innovative solutions for construction challenges. 🌟 His commitment to excellence has consistently driven successful project outcomes.

Awards and Honors 🏅

Elsevier Recognition: Published three Q1 journal papers in 2024, advancing research in magnetic fields’ effects on concrete. Academic Achievement: Recognized for contributing innovative methodologies to concrete technologies at Semnan University Innovation Awards: Praised for applying novel magnetic approaches in structural engineering solutions. Professional Excellence: Earned commendations for delivering high-quality BIM projects and advancing Revit-based construction workflows.

Research Focus 🔬

Mohammadmahdi’s research centers on leveraging magnetic fields to enhance concrete’s mechanical properties. 🧲 His studies delve into the compressive strength of concrete enriched with silica sand, ferrosilicon, and nano-silica. 📖 His publications include experimental and numerical investigations of magnetic field effects, aiming to improve concrete’s durability and magnetization. 💡 A pioneering approach integrates nanotechnology and magnetic innovations for advanced construction materials. ✨ His work bridges theory and application, inspiring sustainable and efficient civil engineering solutions.

Publications 📖

1. Numerical Investigation on the Impact of Alternating Magnetic Fields on the Mechanical Properties of Concrete with Various Silica Sand and Ferrosilicon Compositions

Authors: Ghanepour, M.; Amini, M.M.; Rezaifar, O.
Journal: Results in Engineering
Volume: 24
Article ID: 103631
Year: 2024
Citations: 0
This study investigates the mechanical behavior of concrete exposed to alternating magnetic fields, focusing on compositions incorporating silica sand and ferrosilicon. Advanced numerical simulations provide insights into how magnetic fields influence concrete’s structural performance and durability. This work serves as a significant step in optimizing construction materials for modern infrastructure.

2. Experimental Analysis of the Impact of Alternating Magnetic Fields on the Compressive Strength of Concrete with Various Silica Sand and Microsilica Compositions

Authors: Amini, M.M.; Ghanepour, M.; Rezaifar, O.
Journal: Case Studies in Construction Materials
Volume: 21
Article ID: e03487
Year: 2024
Citations: 3
This experimental study explores the compressive strength enhancement of concrete treated with alternating magnetic fields. It emphasizes how the integration of silica sand and microsilica alters the concrete’s properties under magnetic exposure. The findings highlight innovative strategies to improve concrete performance in high-demand applications.

3. A Novel Magnetic Approach to Improve Compressive Strength and Magnetization of Concrete Containing Nano Silica and Steel Fibers

Authors: Rezaifar, O.; Ghanepour, M.; Amini, M.M.
Journal: Journal of Building Engineering
Volume: 91
Article ID: 109342
Year: 2024
Citations: 7
This paper presents a groundbreaking approach to enhancing concrete’s compressive strength and magnetization through the inclusion of nano silica and steel fibers. The application of magnetic fields during the curing process demonstrates significant improvements in both mechanical and magnetic properties. This research has profound implications for the construction of magnetically sensitive and structurally robust materials.

Conclusion

Mohammadmahdi Amini demonstrates significant potential for the Research for Best Researcher Award due to his impactful publications, technical expertise, and innovative research on concrete properties. However, improving language proficiency, further diversifying research topics, and showcasing exceptional academic achievements could make his profile even more compelling for international recognition. Overall, he is a strong candidate for the award.

Bernd Bachert | Korrosionsschutz | Best Researcher Award

Dr.  DHBW Mosbach, Germany

With a robust academic background in Mechanical Engineering, including a Doctorate from Darmstadt University of Technology, this individual has amassed extensive experience in academia and industry. They have served as a professor, dean, and director across various institutions, playing a pivotal role in developing and accrediting numerous engineering study programs. Their expertise extends to fluid mechanics, thermodynamics, and materials science. They also lead research in mechanical engineering and renewable energy, contributing significantly to education and innovation. As CEO of IRATEC GmbH, they combine academic rigor with practical industry insights, making them a highly accomplished professional in their field.

Professional Profiles:

Education 🎓

February 1982 – June 1987: Secondary School Neckargemünd Qualification: GCSE August 1987 – February 1991: Training at Eltro GmbH, Heidelberg
Qualification: Precision Mechanic August 1991 – June 1992: Johannes-Gutenberg-Schule, Heidelberg Qualification: Technical Diploma (Fachhochschulreife) September 1992 – January 1997: University of Applied Sciences Mannheim, Faculty of Mechanical Engineering Qualification: Graduate Engineer in Mechanical Engineering (FH) October 1997 – April 2000: Darmstadt University of Technology, Faculty of Mechanical Engineering Qualification: Graduate Engineer in Mechanical Engineering June 2000 – December 2003: Doctoral Thesis at Darmstadt University of Technology, Faculty of Mechanical Engineering Qualification: Doctor of Mechanical Engineering (Dr.-Ing.)

Work Experience 💼

February 1991 – August 1991: Wolfgang Bortz Zerspanungstechnik GmbH Function: Programming of CNC Machines January 1997 – June 1999: Assistant Professor at BFZ Nürnberg January 1997 – December 1997: KDK Kalibrierdienst Kopp GmbH (Calibration Service) Function: Handling of problems in quality assurance and quality management October 1997 – April 2000: Assistant Professor at Abendakademie Mannheim and DaimlerChrysler Training Center Mannheim Lecture: Fluid Mechanics

Evaluation of the Candidate for the Best Researcher Award

Strengths:

  1. Extensive Academic Background:
    • The candidate has a solid educational foundation in mechanical engineering, with qualifications ranging from a Technical Diploma to a Doctorate in Mechanical Engineering (Dr.-Ing.). This extensive academic background supports their credibility and expertise in the field.
  2. Diverse Work Experience:
    • The candidate has a wealth of experience across various roles, including positions as an assistant professor, director, professor, and head of departments. Their roles have spanned multiple institutions and responsibilities, indicating a strong capacity for leadership and innovation in both academia and industry.
  3. Leadership and Management Skills:
    • The candidate has held significant leadership positions, such as Director of the Heidelberg Institute for Applied Research and Development, Professor and Dean at SRH University, and Head of Mechanical Engineering at DHBW Mosbach. These roles highlight their ability to lead and manage academic and research initiatives effectively.
  4. Contributions to Education:
    • The candidate has been instrumental in developing and accrediting various study programs, including Bachelor’s and Master’s degrees in Mechanical Engineering and Industrial Engineering. Their work in creating didactical training and education programs for national and international partners showcases their dedication to advancing education in engineering.
  5. Research Contributions:
    • The candidate has engaged in several research projects in areas such as Mechanical Engineering, Water Power Engineering, and Dual Education. Their authorship of various scientific publications further underscores their contributions to research and knowledge dissemination.
  6. International Experience and Collaboration:
    • As the Head of the International Office at DHBW Mosbach, the candidate has demonstrated a commitment to fostering international collaborations and expanding the global reach of their institution.
  7. Industry Engagement:
    • The candidate’s part-time role as CEO of IRATEC GmbH, coupled with their experience in consulting and renewable energy engineering, illustrates a strong connection between their academic work and practical, real-world applications.

Areas for Improvement:

  1. Focused Research Output:
    • While the candidate has a broad range of experience, a more focused research output in a specific area of mechanical engineering might strengthen their candidacy for a Best Researcher Award. Concentrating on one niche could lead to more impactful publications and a stronger reputation in that domain.
  2. Innovation and Patents:
    • The candidate’s profile could be further enhanced by showcasing any patents or innovative technologies they may have developed. Highlighting these achievements would emphasize their contributions to the advancement of mechanical engineering.
  3. Recent Research Activity:
    • Emphasizing more recent and cutting-edge research activities would demonstrate continued relevance and engagement with current trends in mechanical engineering. If recent high-impact publications or projects are not prominent, focusing on these could be beneficial.

 

✍️Publications Top Note :

Time-dependent measurements of cavitation damage
Authors: Osterman, A., Bachert, B., Sirok, B., Dular, M.
Journal: Wear, 2009, 266(9-10), pp. 945–951
Citations: 29

Comparison of different methods for the evaluation of cavitation damaged surfaces
Authors: Bachert, B., Ludwig, G., Stoffel, B., Baumgarten, S.
Conference: Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference, 2005, 2, pp. 553–560, FEDSM2005-77368
Citations: 1

Comparison of different methods for the evaluation of cavitation damaged surfaces
Authors: Bachert, B., Stoffel, B., Ludwig, G., Baumgarten, S.
Conference: Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005, 2005, pp. 2111–2118
Citations: 7

Relationship between cavitation structures and cavitation damage
Authors: Dular, M., Bachert, B., Stoffel, B., Širok, B.
Journal: Wear, 2004, 257(11), pp. 1176–1184
Citations: 249

Experimental investigations concerning erosive aggressiveness of cavitation at different test configurations
Authors: Bachert, B., Dular, M., Baumgarten, S., Ludwig, G., Stoffel, B.
Conference: Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004, 3, pp. 733–743, HT-FED04-56597
Citations: 5

Experimental investigations concerning influences on cavitation inception at an axial test pump
Authors: Bachert, B., Brunn, B., Stoffel, B.
Conference: Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2003, 2 A, pp. 249–256
Citations: 5

The influence of cavitation structures on the erosion of a symmetrical hydrofoil in a cavitation tunnel
Authors: Širok, B., Dular, M., Novak, M., Ludwig, G., Bachert, B.
Journal: Strojniski Vestnik/Journal of Mechanical Engineering, 2002, 48(7), pp. 368–378
Citations: 13

Conclusion:

The candidate is a strong contender for the Best Researcher Award due to their extensive academic qualifications, leadership experience, and contributions to education and research. Their background in mechanical engineering is complemented by significant roles in academia and industry, making them a well-rounded and influential figure in the field. To enhance their candidacy, they could focus on a more specialized area of research, highlight any innovative contributions, and ensure their recent research activities are at the forefront of their application.