Zhang sixiang | Energies | Best Researcher Award

Mr. Zhang sixiang | Energies | Best Researcher Award

Mr , Dalian Maritime University, China

Zhang Sixiang is a distinguished student at Dalian Maritime University, pursuing a degree in Materials Science and Engineering. Born in February 2004, in Shanxi Province, China, Zhang has demonstrated exceptional academic prowess, ranking top 1.8% in his class. As a member of the Communist Party (Probationary), Zhang has showcased his commitment to community service and leadership. His research endeavors focus on materials science, computational simulations, and experimental investigations.

Profile

Scopus

orcid

Education 🎓

Currently studying at Dalian Maritime University (a “211 Project” and “Double First-Class” university), Materials Science and Engineering (2022-2026) GPA: 3.97/5.00 (Top 1.8% of the class) Main courses: Solid-State Phase Transformation and Metal Heat Treatment (94), Materials Physical Chemistry (95), Materials Analysis and Testing Technology (95), Materials Mechanics (96)Familiarity with COMSOL, Abaqus, Ansys, Workbench, Ls-Dyna, and Solidworks software; XRD, TEM, SEM instruments; Origin data processing software and Office

Experience 💼

Research Assistant, Dalian Maritime University (2022-Present) Participated in research projects, including numerical studies on phase change materials and experimental investigations on aluminum alloy sheets Utilized computational simulations (COMSOL, Abaqus, Ansys) and experimental techniques (XRD, TEM, SEM) Co-authored research papers published in reputable journals, including International Communications in Heat and Mass Transfer and Journal of Materials Research Collaborated with professors and researchers, developing strong teamwork and communication skills

Awards and Awards 🏆

National Scholarship (Top 1, 1/55) Excellent Student award Emotional Intelligence ScholarshipNational First Prize, National University Student Mathematics Competition Third Prize, Liaoning Province University Student Materials Mechanics Competition National Third Prize, National University Student Metallography Skills Competition National Third Prize, National University Student Electrical Installation Technology Innovation Competition

Research Focus

Materials Science: phase change materials, aluminum alloy sheets, materials properties, and applicationsComputational Simulations: COMSOL, Abaqus, Ansys, numerical modeling, and simulation Experimental Investigations: XRD, TEM, SEM, materials characterization, and testing Energy Storage and Conversion: thermal energy storage, phase change materials, and heat transfer Materials Processing and Manufacturing: metal forming, machining, and surface treatment

Publications 📚

1. A bi-level robust optimization model for the coupling allocation of post-disaster personnel and materials assistance 🌪️
Journal of Cleaner Production, 2024-09, DOI: 10.1016/j.jclepro.2024.143099

2. Optimizing mobility resource allocation in multiple MaaS subscription frameworks 🚗
Annals of Operations Research, 2024-08-23, DOI: 10.1007/s10479-024-06209-9

3. Analysing preferences for integrated micromobility and public transport systems 🚴‍♀️
Transportation Research Part A: Policy and Practice, 2024-03, DOI: 10.1016/j.tra.2024.103996

4. Analysis on Braess paradox and network design considering parking in the autonomous vehicle environment 🤖
Computer-Aided Civil and Infrastructure Engineering, 2023-08-09, DOI: 10.1111/mice.13080

5. Equilibrium analysis of morning commuting and parking under spatial capacity allocation in the autonomous vehicle environment 🚗
Transportation Research Part E: Logistics and Transportation Review, 2023-04, DOI: 10.1016/j.tre.2023.103071

6. Capacity allocation and tolling-rewarding schemes for the morning commute with carpooling 🚗
Transportation Research Part C: Emerging Technologies, 2022-09, DOI: 10.1016/j.trc.2022.103789

7. Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment 🤖
Transportation Research Part B: Methodological, 2019-10, DOI: 10.1016/j.trb.2019.08.010

8. An ensemble machine learning-based modeling framework for analysis of traffic crash frequency 🚨
Computer-Aided Civil and Infrastructure Engineering, 2019-07-31, DOI: 10.1111/mice.12485

9. Integrating uncertainty considerations into multi-objective transportation network design projects accounting for environment disruption 🌎
Transportation Letters, 2019-07-31, DOI: 10.1080/19427867.2017.1359940

10. A network traffic assignment model for autonomous vehicles with parking choices 🤖
Computer-Aided Civil and Infrastructure Engineering, 2019-07-30, DOI: 10.1111/mice.12486

11. Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles 🚗

Conclusion

Based on the provided information, the individual is an exceptional researcher with a strong academic background, interdisciplinary research experience, and a notable publication record. Their awards and honors demonstrate their commitment to excellence and innovation. While there are areas for improvement, the individual’s strengths make them a strong candidate for the Best Researcher Award.

Claudia Guadalupe Adam | liquidos ionicos | Women Researcher Award

Prof. Dr. Claudia Guadalupe Adam | liquidos ionicos | Women Researcher Award

Prof Titular at SUT at Universidad Nacional del Litoral, Argentina

Claudia Guadalupe Adam is an accomplished chemist from Santa Fe, Argentina, with over 33 years of teaching experience in Organic Chemistry at the Universidad Nacional del Litoral. She is married with three children and maintains a robust academic and research profile.

Publication Profile

scopus

Education🎓 

Postdoctoral in Physical Chemistry, University of Santiago de Compostela, Spain (2002-2004) | 📜 Ph.D. in Chemistry, Universidad Nacional del Litoral (2002) | 📚 Bachelor’s in Chemistry, Analytical Orientation, FIQ-UNL (1990).

Experience👩‍🏫

Full Professor of Organic Chemistry, FIQ-UNL (2023-present) | 🧪 Independent Researcher (2024) | 🏫 Former positions include Teaching Assistant and Head of Practical Works in Organic Chemistry at various levels since 1991.

Awards and Honors🏅 

Research Category II, FIQ-UNL (2014) | 🎖️ Peer Evaluator, CONEAU (2022) | 🌟 Representative of QUIMICA discipline at AUGM (2010-2018).

Research Focus🔬 

Organic Chemistry with a special emphasis on analytical methods | 📊 Contributions to the Inter-University Exchange Program | 💡 Engaged in curriculum development for environmental engineering and chemistry programs.

Publication  Top Notes

Significant effects of the anion on the catalytic behaviour of sulfonic acid-functionalized ionic liquids in transesterification reactions – A combined electrochemical/catalytic study

Authors: Martini, M.B., Adam, C.G., Fernández, J.L.

Journal: Molecular Catalysis

Year: 2021

Volume/Article Number: 513, 111821

Citations: 2

Insights on the catalytic behaviour of sulfonic acid-functionalized ionic liquids (ILs) in transesterification reactions – voltammetric characterization of sulfonic task-specific ILs with bisulfate anions

Authors: Martini, M.B., Fernández, J.L., Adam, C.G.

Journal: Physical Chemistry Chemical Physics

Year: 2021

Volume: 23(4), pp. 2731–2741

Citations: 4

Assessment of: In vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein

Authors: Rivero Berti, I., Rodenak-Kladniew, B., Onaindia, C., Durán, N., Castro, G.R.

Journal: RSC Advances

Year: 2020

Volume: 10(49), pp. 29336–29346

Citations: 17

A simple way to prepare palladium nanoparticles decorated with cyclodextrins and ionic liquid. The effects of coating on the catalytic activity and colloidal stability

Authors: Bravo, M.V., Silva, O.F., Adam, C., Granados, A.M.

Journal: Journal of Molecular Liquids

Year: 2020

Volume/Article Number: 304, 112725

Citations: 10

Understanding the Role of Protic Ionic Liquids (PILs) in Reactive Systems: Rational Selection of PILs for the Design of Green Synthesis Strategies for Allylic Amines and β-Amino Esters

Authors: Bravo, M.V., Fernández, J.L., Adam, C.G., Della Rosa, C.D.

Journal: ChemPlusChem

Year: 2019

Volume: 84(7), pp. 919–926

Citations: 6

Synthesis and Self-Assembly Properties of New Surface-Active 1-Alkylimidazolium Ionic Liquids in Aqueous Media

Authors: Adam, C.G., Fortunato, G.G.

Journal: Journal of Surfactants and Detergents

Year: 2019

Volume: 22(3), pp. 501–513

Citations: 12

Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method

Authors: Demonte, L.D., Michlig, N., Gaggiotti, M., Beldoménico, H.R., Repetti, M.R.

Journal: Science of the Total Environment

Year: 2018

Volume: 645, pp. 34–43

Citations: 93

Anion influence on aggregation behavior of imidazolium-based ionic liquid in aqueous solutions: Effect on diverse chemical processes

Authors: Adam, C.G., Bravo, M.V., Granados, A.M.

Journal: Industrial and Engineering Chemistry Research

Year: 2017

Volume: 56(5), pp. 1214–1222

Citations: 4

Molecular solvent effect on the acidity constant of protic ionic liquids

Authors: Adam, C., Bravo, M.V., Mancini, P.M.E.

Journal: Tetrahedron Letters

Year: 2014

Volume: 55(1), pp. 148–150

Citations: 17

Ionic liquids as binary mixtures with selected molecular solvents, reactivity characterisation and molecular-microscopic properties

Authors: Mancini, P.M.E., Bravo, M.V., Graciela, G.G., Adam, C.G.

Book Chapter: Green Solvents II: Properties and Applications of Ionic Liquids

Year: 2012

Pages: 335–362

Citations: 2

Conclusion

Claudia Guadalupe Adam is a highly qualified candidate for the Women Researcher Award. Her extensive academic background, dedication to teaching, significant contributions to research, and leadership roles position her as a role model in the field of chemistry. By focusing on enhancing her research output and engaging in community outreach, Claudia can further solidify her impact and inspire the next generation of women scientists. Her application for the award would not only recognize her achievements but also promote greater visibility for women in the scientific community.

Prof Dr. Bing-Yuh Lu | Sun-tracking solar cells | Academic Excellence in Mechanics Award

Prof Dr. Bing-Yuh Lu | Sun-tracking solar cells | Academic Excellence in Mechanics Award

Research asistant at SUT at Guangdong University of Petrochemical Technology, China

Professor Dr. Bing-Yuh Lu, born in Miouli, Taiwan (1964), is a distinguished academic in Electrical Engineering. He holds a PhD from National Taiwan University and currently serves as a full professor at the School of Automation, Guangdong University of Petrochemical Technology (GDUPT). He has held numerous prestigious academic positions, including professor at Tungnan University and adjunct roles at Catholic St. Mary Junior College and National Taipei University of Business. Dr. Lu is also an active IEEE member and serves on the IEEE International Conference on Advanced Communication’s Technical Committee. His research interests include medical engineering, acoustics, and signal processing.

Publication Profile

orcid

Education🎓

PhD in Electrical Engineering National Taiwan University (2000) MS in Electrical Engineering  National Taiwan University (1993 BS in Electrical Engineering National Central University (1988) Dr. Lu’s academic path showcases his deep expertise in electrical engineering. His advanced studies at prestigious institutions like National Taiwan University laid the foundation for his distinguished academic career, where he has contributed significantly to automation, signal processing, and medical engineering.

Experience🧑‍🏫

With over 25 years in academia, Dr. Lu’s experience spans across electrical engineering, automation, and information management. His teaching and leadership roles at GDUPT and Tungnan University reflect his long-standing commitment to fostering innovation in automation and electronics.

Awards and Honors🏅 🏫 

National Taipei University of Business Outstanding Reviewer for International Journals As a recognized leader in his field, Dr. Lu has been honored with various awards, including his prestigious membership in the IEEE Technical Committee and grants for innovative projects. He has also been recognized for his excellence in teaching and reviewing for international publications.

Research Focus🔬

Dr. Lu’s research spans a wide array of technical areas, including medical engineering, where he explores advanced sensor technology, and acoustics. His work on electronic circuits, systems modeling, and signal measurement positions him as a key contributor to advancements in both academia and industry.

Publication  Top Notes

Evaluation System for Dancing Enlightenment Posture Training Using the Skeleton Tracking of Microsoft Common Objects in Context

Conference: International Conference on Advanced Communication Technology (ICACT), 2024

DOI: 10.23919/ICACT60172.2024.10471944

Contributors: Huang, R.; Deng, H.; Wang, R.-Y.; Lu, B.-Y.; Ren, H.; Chen, Y.; Ye, J.; Chen, J.; Jia, Y.; Lang, L.
This research presents an innovative system for evaluating dance postures using Microsoft’s object tracking technology, providing real-time feedback and posture correction for dancers.

Time-frequency Analysis for Validating Prognostics Algorithms of Rolling Element Bearings

Conference: International Conference on Advanced Communication Technology (ICACT), 2024

DOI: 10.23919/ICACT60172.2024.10471976

Contributors: Zhu, G.; Xu, X.; Zhong, Q.; Lu, B.-Y.; Lu, Y.; Xu, G.; Zhou, Y.; Jiang, Z.; Sun, K.; Wang, M.
This study focuses on validating algorithms for the early detection of bearing failures using time-frequency analysis, contributing to more effective predictive maintenance.

ANFIS‐based Controlled Spherical Rotator with Quadrant Photodiode to Improve Position Detection Accuracy

Journal: IET Optoelectronics, October 2024

DOI: 10.1049/ote2.12127

Contributor: Bing‐Yuh Lu
This work introduces an Adaptive Neuro-Fuzzy Inference System (ANFIS) to enhance position detection in spherical rotators using quadrant photodiodes, improving precision in industrial and robotic systems.

Investigation on Errors of the Approximation Equation of Correction Factor G<sub>7</sub> for Four-Point Probe Resistivity Measurement

Journal: IEEE Instrumentation & Measurement Magazine, August 2024

DOI: 10.1109/mim.2024.10623159

Contributors: Bing-Yuh Lu; Pao-An Lin; Linshu Zheng
This paper explores the accuracy of correction factors in four-point probe resistivity measurements, offering new insights into error reduction for material testing in semiconductors.

Basic Developing Environment of Microcontroller-based Monitoring System for Physiological Signals

Conference: International Conference on Advanced Communication Technology (ICACT), 2023

DOI: 10.23919/ICACT56868.2023.10079583

Contributors: Xie, M.; Wu, R.; Liu, S.; Lin, A.; Liu, M.; Lin, P.-A.; Lei, G.; Liu, J.; Lu, J.; Lu, B.-Y.
This paper discusses the development of a microcontroller-based monitoring system for physiological signals, which can be used in medical diagnostics and patient care.

Fuzzy PID Controlled Temperature in Phototherapy Incubator for Infant Jaundice Treatment: A Simulation

Upcoming Contribution
This study involves using a Fuzzy Proportional-Integral-Derivative (PID) controller to maintain precise temperature in incubators used for infant jaundice treatment, improving the effectiveness of phototherapy.

Conclusion

Professor Dr. Bing-Yuh Lu demonstrates a strong potential for the Research for Academic Excellence in Mechanics Award through his extensive background in electrical engineering, experience in academia, and leadership in research initiatives. While he possesses many strengths, focusing on mechanics-related research and publications will significantly enhance his candidacy. By addressing areas for improvement, such as increasing his publications in mechanics and fostering interdisciplinary collaborations, Dr. Lu can position himself as a leading contender for this prestigious award. His commitment to innovation and excellence in research aligns well with the award’s criteria, making him a valuable candidate.

Ze Yang | self-powered system | Best Researcher Award

Assist Prof Dr. Ze Yang | self-powered system | Best Researcher Award

Assist Prof Dr at Tsinghua University, China

Dr. Ze Yang is a Postdoctoral Research Fellow at Tsinghua University’s Intelligence and Biological Machinery Laboratory, specializing in energy harvesting and mechanical engineering. With a Ph.D. from China University of Geosciences (Beijing), he has developed innovative systems like triboelectric nanogenerators (TENGs) and energy-harvesting backpacks. His work focuses on electrostatic adsorption and charge-pumping methods. Dr. Yang has published extensively in top-tier journals like Nano Energy and ACS Nano, contributing significantly to advancements in nanoenergy. He has earned multiple awards for his research excellence and is fluent in Mandarin and English.

Publication Profile

Education🎓

Dr. Ze Yang holds a Ph.D. in Mechanical Engineering from China University of Geosciences (Beijing), obtained in 2022. Before that, he earned a Master’s degree in Mechanical Engineering from Beihua University (2018) and a Bachelor’s degree from Hubei University of Art and Science (2016). During his Ph.D., he participated in a joint training program with Tsinghua University, gaining hands-on experience in cutting-edge research on mechanical systems and energy harvesting technologies. Currently, he is a Postdoctoral Research Fellow at Tsinghua University. 📖

Experience⚙️

Dr. Ze Yang’s research journey began with his role as a Graduate Research Assistant at Beihua University, focusing on rehabilitation bed systems. At Tsinghua, he designed advanced TENGs and energy-harvesting systems. His projects include developing load-suspended and charge-pumping backpacks, which use 3D printing and innovative designs to reduce impact and improve energy efficiency. As a Postdoctoral Fellow, he continues his groundbreaking work on non-contact electrostatic induction and wind energy harvesting. He is proficient in mechanical drawing and 3D printing. 🛠️🎯🚀

Awards and Honors 🏆

Dr. Ze Yang has received numerous accolades for his academic and research excellence. These include the prestigious National Scholarship for Excellent Academic Performance (Top 2%) in 2017, First Prize for “Excellent Academic Report” at Tsinghua University in 2021, and the Best Poster Award at the 5th International Conference on Nanoenergy and Nanosystems in 2021. His innovative work on energy-harvesting technologies has also garnered wide recognition within the mechanical engineering field.

Research Focus🌍

Dr. Ze Yang’s research focuses on mechanical engineering, triboelectric nanogenerators (TENGs), and energy harvesting. His groundbreaking work includes developing charge-pumping systems and non-contact electrostatic induction for energy generation from human motion and environmental sources like wind. He also focuses on minimizing material fatigue and improving output efficiency through innovative methods like charge pumping and voltage stabilization. His research has major implications for renewable energy and impact reduction technologies.

 

Publication  Top Notes

Technological Progress and Commercial Applications: Choi et al. (2023) have explored the evolution of TENG technology and its transition from laboratory innovations to commercial applications. Their review in ACS Nano covers breakthroughs in material development, system integration, and potential industrial uses .

Flexible Tactile Sensors: Song et al. (2022) introduced a flexible triboelectric tactile sensor capable of recognizing material and texture simultaneously. This innovation in Nano Energy highlights the sensor’s potential use in robotics and prosthetics .

Energy Harvesting from Wearables: Yang et al. (2021) presented a “power backpack” designed for energy harvesting and reduced load impact. The device utilizes a TENG to generate electricity from human movement, providing a practical energy source for portable electronics .

Charge Pumping and Voltage Stabilization: Research led by Yang et al. (2021) focuses on improving the efficiency of TENGs by incorporating a charge pumping mechanism, stabilizing the voltage, and boosting the current output .

Biosystems and Self-powered Devices: Shen et al. (2022) reviewed the application of TENGs in biosensing and self-powered systems. They emphasize challenges like device miniaturization and material optimization, as well as their use in health monitoring and wearable technologies .

Conclusion

Z. Yang is undoubtedly a strong candidate for the Best Researcher Award, with a proven track record of innovation, excellence in mechanical engineering, and significant contributions to energy harvesting technologies. His strengths in system design, theoretical analysis, and practical applications make him an asset to the field. By expanding his collaborative network and incorporating AI technologies into his research, Yang has the potential to further enhance his contributions and solidify his status as a leading researcher.