Prof Xiaomeng Zhang | Hydrogen production by electrolyzing water | Best Researcher Award

Prof Xiaomeng Zhang | Hydrogen production by electrolyzing water | Best Researcher Award

 Prof at Chinese Academy of Sciences, China

Xiaomeng Zhang is a distinguished professor at the Ganjiang Innovation Academy, Chinese Academy of Sciences (GIA, CAS). With a strong academic background and extensive research experience, he has made significant contributions to materials science and engineering.

Profile

scopus

🎓 Education

– Ph.D.: University of Science and Technology Beijing- *Postdoctoral Research*: Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS)

👨‍🔬 Experience

– *Professor*: Ganjiang Innovation Academy, Chinese Academy of Sciences (GIA, CAS) (2022-Present)- *Researcher*: Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS)- *Project Leader*: National Key R&D Program, National Natural Science Foundation Project, and other scientific research projects

🔍 Research Interest

Xiaomeng Zhang’s research interests include:- Comprehensive treatment of metallurgical waste- Protective coatings for metal substrates- Environmental materials and nano coatings- Metal surface treatment and coating protection technology

Awards and Honors 🏆

– *Science and Technology Promotion Award*: Chinese Academy of Sciences- *First Prize of Science and Technology Award*: China Society for Materials Research- *Third Prize of Beijing Science and Technology Award*- *Excellent Mentor Award for Science and Education Integration*: University of Science and Technology of China (2023

📚 Publications 

1. Preparation and sintering behavior of pre-synthesized Mg-Al-Cr ternary spinel ceramic powders 🔍💡 (S. Hui, J. Yan, W. Zhao, X. Zhang, S. Ye, 2025)
2. Stabilizing Ru Single Atoms on Asymmetric La/Co3O4 Supports 🔋💻 (C. Li, C. Yuan, C. Zhou, S. Ye, Y. Chen, 2025)
3. Tailoring the electron redistribution of RuO2 by constructing a Ru-O-La asymmetric configuration 🔌💡 (C. Li, C. Yuan, X. Huang, S. Ye, Y. Chen, 2025)
4. Structure deformation of Ni–Fe–Se enables efficient oxygen evolution via RE atoms doping ⚗️🔋 (H. Zhao, C. Yuan, C. Li, X. Zhang, Y. Chen, 2025)
5. Interfacial Built-In Electric Field and Interatomic Charge Transfer Synergistically Boosting Oxygen Evolution 🔌💻 (L. Wang, C. Yuan, C. Li, S. Ye, Y. Chen, 2025)

Conclusion

Xiaomeng Zhang is a highly suitable candidate for the Research for Best Researcher Award, given his extensive research experience, interdisciplinary research focus, and significant publications and patents. His leadership in research projects and recognition through awards further strengthen his profile. With some additional emphasis on international collaboration and translation of research to practice, he could further enhance his research impact and solidify his position as a leading researcher in his field.

Zhang sixiang | Energies | Best Researcher Award

Mr. Zhang sixiang | Energies | Best Researcher Award

Mr , Dalian Maritime University, China

Zhang Sixiang is a distinguished student at Dalian Maritime University, pursuing a degree in Materials Science and Engineering. Born in February 2004, in Shanxi Province, China, Zhang has demonstrated exceptional academic prowess, ranking top 1.8% in his class. As a member of the Communist Party (Probationary), Zhang has showcased his commitment to community service and leadership. His research endeavors focus on materials science, computational simulations, and experimental investigations.

Profile

Scopus

orcid

Education 🎓

Currently studying at Dalian Maritime University (a “211 Project” and “Double First-Class” university), Materials Science and Engineering (2022-2026) GPA: 3.97/5.00 (Top 1.8% of the class) Main courses: Solid-State Phase Transformation and Metal Heat Treatment (94), Materials Physical Chemistry (95), Materials Analysis and Testing Technology (95), Materials Mechanics (96)Familiarity with COMSOL, Abaqus, Ansys, Workbench, Ls-Dyna, and Solidworks software; XRD, TEM, SEM instruments; Origin data processing software and Office

Experience 💼

Research Assistant, Dalian Maritime University (2022-Present) Participated in research projects, including numerical studies on phase change materials and experimental investigations on aluminum alloy sheets Utilized computational simulations (COMSOL, Abaqus, Ansys) and experimental techniques (XRD, TEM, SEM) Co-authored research papers published in reputable journals, including International Communications in Heat and Mass Transfer and Journal of Materials Research Collaborated with professors and researchers, developing strong teamwork and communication skills

Awards and Awards 🏆

National Scholarship (Top 1, 1/55) Excellent Student award Emotional Intelligence ScholarshipNational First Prize, National University Student Mathematics Competition Third Prize, Liaoning Province University Student Materials Mechanics Competition National Third Prize, National University Student Metallography Skills Competition National Third Prize, National University Student Electrical Installation Technology Innovation Competition

Research Focus

Materials Science: phase change materials, aluminum alloy sheets, materials properties, and applicationsComputational Simulations: COMSOL, Abaqus, Ansys, numerical modeling, and simulation Experimental Investigations: XRD, TEM, SEM, materials characterization, and testing Energy Storage and Conversion: thermal energy storage, phase change materials, and heat transfer Materials Processing and Manufacturing: metal forming, machining, and surface treatment

Publications 📚

1. A bi-level robust optimization model for the coupling allocation of post-disaster personnel and materials assistance 🌪️
Journal of Cleaner Production, 2024-09, DOI: 10.1016/j.jclepro.2024.143099

2. Optimizing mobility resource allocation in multiple MaaS subscription frameworks 🚗
Annals of Operations Research, 2024-08-23, DOI: 10.1007/s10479-024-06209-9

3. Analysing preferences for integrated micromobility and public transport systems 🚴‍♀️
Transportation Research Part A: Policy and Practice, 2024-03, DOI: 10.1016/j.tra.2024.103996

4. Analysis on Braess paradox and network design considering parking in the autonomous vehicle environment 🤖
Computer-Aided Civil and Infrastructure Engineering, 2023-08-09, DOI: 10.1111/mice.13080

5. Equilibrium analysis of morning commuting and parking under spatial capacity allocation in the autonomous vehicle environment 🚗
Transportation Research Part E: Logistics and Transportation Review, 2023-04, DOI: 10.1016/j.tre.2023.103071

6. Capacity allocation and tolling-rewarding schemes for the morning commute with carpooling 🚗
Transportation Research Part C: Emerging Technologies, 2022-09, DOI: 10.1016/j.trc.2022.103789

7. Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment 🤖
Transportation Research Part B: Methodological, 2019-10, DOI: 10.1016/j.trb.2019.08.010

8. An ensemble machine learning-based modeling framework for analysis of traffic crash frequency 🚨
Computer-Aided Civil and Infrastructure Engineering, 2019-07-31, DOI: 10.1111/mice.12485

9. Integrating uncertainty considerations into multi-objective transportation network design projects accounting for environment disruption 🌎
Transportation Letters, 2019-07-31, DOI: 10.1080/19427867.2017.1359940

10. A network traffic assignment model for autonomous vehicles with parking choices 🤖
Computer-Aided Civil and Infrastructure Engineering, 2019-07-30, DOI: 10.1111/mice.12486

11. Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles 🚗

Conclusion

Based on the provided information, the individual is an exceptional researcher with a strong academic background, interdisciplinary research experience, and a notable publication record. Their awards and honors demonstrate their commitment to excellence and innovation. While there are areas for improvement, the individual’s strengths make them a strong candidate for the Best Researcher Award.

Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Assoc. Prof. Dr Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Associate Professor at University of Shanghai for Science and Technology, China

A Visiting Scholar with the Hua Zhang Group at City University of Hong Kong, this researcher has a rich background in applied and physical chemistry, with a specialization in nanomaterial design and catalytic materials for energy and environmental applications. They have held academic roles as a Lecturer at the University of Shanghai for Science and Technology and completed postdoctoral research at Fudan University. Known for their innovative contributions, they have published over 40 SCI papers and hold five patents in catalytic materials and nanotechnology.

Publication Profile

orcid

Education 🎓 

Ph.D. in Physical Chemistry, East China University of Science and Technology (2012-2017) – Focused on nanomaterials, specifically liposomes, polymers, micelles, and upconversion nanomaterials, under Prof. Honglai Liu (Changjiang Scholar). B.Sc. in Applied Chemistry, Dalian Polytechnic University (2008-2012) – Foundation in chemistry with a focus on applied chemical principles. Postdoctoral Fellow, Material Science, Fudan University (2017-2019) – Developed an electrochemical testing platform for research in catalytic efficiency for HER/OER/CER reactions, under Prof. Dalin Sun.

Experience👨‍🏫 

Lecturer, University of Shanghai for Science and Technology (2019-2024) – Established an experimental platform for catalytic materials in HER/OER/CER, with a focus on water-splitting reactions and pollution mitigation.  Postdoctoral Researcher, Fudan University (2017-2019) – Built a robust electrochemical testing platform for industrial-grade water-splitting projects. Visiting Scholar, Hua Zhang Group, City University of Hong Kong (2024-Present) – Engaged in innovative nanomaterial research for energy applications.

Awards and Honors🏆 

Shanghai Natural Science General (2023) Shanghai “Medical and Industrial Intersection” project (2023) National Natural Science Foundation of China (2022) Shanghai Sailing Program (2020) First-Class Funding, China Postdoctoral Fund (2019)

Research Focus🔬 

Catalytic materials for sustainable energy – Designs metal boride and phosphide catalysts for high-efficiency HER/OER/CER reactions. Water-splitting and hydrogen production – Focuses on catalytic materials for efficient hydrogen production through water splitting. Water pollution mitigation – Develops electrodes for chlorine evolution reactions to combat water pollution. Nanomaterial synthesis – Specializes in liposomes, micelles, and mesoporous silica for energy storage and environmental applications.

Publication  Top Notes

Corrosion-resistant titanium-based electrodes synergistically stabilized with polymer for hydrogen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.061

Contributors: Shuo Weng, Xianzuan Deng, Jiayi Xu, Yizhou Wang, Mingliang Zhu, Yuqin Wang, Weiju Hao

Mild and rapid construction of Ti electrodes for efficient and corrosion-resistant oxidative catalysis at industrial-grade intensity

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.010

Contributors: Rui Xiao, Dingkun Ji, Liugang Wu, Ziyan Fang, Yanhui Guo, Weiju Hao

Regulating coordination environment in metal-organic framework@cuprous oxide core-shell catalyst for promoting electrocatalytic oxygen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: January 2025

DOI: 10.1016/j.jcis.2024.09.040

Contributors: Hui Wang, Zijian Wang, Jin Ma, Jian Chen, Hong Li, Weiju Hao, Qingyuan Bi, Shuning Xiao, Jinchen Fan, Guisheng Li

CDs “inserted” abundant FeB-based electrode via “local photothermal effect” strategy toward efficient overall seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D4QI00415A

Contributors: Shiheng Liang, Liugang Wu, Yiming Wang, Yuqi Shao, Hongyuan Song, Ziliang Chen, Weiju Hao

Construction of a phosphorus-based integrated electrode for efficient and durable seawater splitting at a large current density

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02222F

Contributors: Jiajing Xia, Lujia Zhang, Yizhou Wang, Weiju Hao

Reasonable regulation of flexible sulfur-based bifunctional catalytic electrodes for efficient seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02575F

Contributors: Fengjing Lei, Xunwei Ma, Xinyun Shao, Ziyan Fang, Yuqin Wang, Weiju Hao

Self-hydrolysis of gelatin-coupled boride electrode enabling ultrastability for overall seawater splitting at industrial environment

Journal: Materials Today Energy

Publication Date: December 2024

DOI: 10.1016/j.mtener.2024.101705

Contributors: Weiju Hao, Xinke Huang, Rikai Liang, Jinli Fan, Jia Liang, Yanhui Guo, Qingyuan Bi, Jichen Fan, Ziliang Chen

Conclusion

With an impressive track record of research, patents, publications, and funding achievements, [Name of the Researcher] is a strong candidate for the “Best Researcher Award.” Their expertise in catalytic materials and hydrogen generation, combined with impactful innovations, places them at the forefront of sustainable energy research. Continued exploration of interdisciplinary applications, along with enhanced global engagement and mentorship roles, would further solidify their standing as an influential leader in the field. Given their achievements, commitment to sustainable innovation, and ongoing contributions to science and technology, the nominee is exceptionally well-suited for this prestigious award.