Mohammad Hamdan | microchannels | Best Researcher Award

Prof. Mohammad Hamdan |  microchannels | Best Researcher Award

Professor at American University of Sharjah, United Arab Emirates

A distinguished academic and professional, the individual is currently a professor and researcher in the Mechanical Engineering Department. With an extensive background in microfluidics, heat transfer, and thermal management, their leadership in High-Performance Computing (HPC) and mentoring graduate students highlights their passion for innovation. A dedicated educator, they have successfully guided numerous Ph.D. and M.S. candidates, emphasizing interdisciplinary research. Their extensive managerial experience in organizing global forums and conferences speaks to their leadership and organizational acumen.

 

Publication Profile

scholar

Education🎓 

Ph.D. in Mechanical Engineering from University of Cincinnati, USA (2003) – Focused on Microfluid Flow & Heat Transfer and MEMS. M.S. in Mechanical Engineering from Jordan University of Science and Technology, Jordan (1999) – Specializing in Computational Fluid Dynamics (CFD) and Energy. B.Sc. in Mechanical Engineering from Jordan University of Science and Technology, Jordan (1997) – Concentrating on Fluid Dynamics, Thermal Science, and Energy Conversion. 📚🧑‍🎓

Experience💼

Lead of HPC Lab, Mechanical Engineering Department (2022-2024). Graduate Studies Coordinator, American University of Sharjah (AUS) (2016-2022). Graduate Studies Coordinator, UAEU (2015-2016). Program Chair, IRECGA’14 at UAEU (2013-2014). Lead Project Engineer, GE (2005-2007) – Led projects totaling $2M ASME Student Advisor and Course Coordinator at UAEU (2008-2013).

Awards and Honors🏆

Recognition for Outstanding Research in Thermal Management at UAEU. Best Paper Award at IRECGA Conference 2012. Distinguished Service Award for contributions to ASME student chapters. Excellence in Supervision – Outstanding mentoring of M.S. and Ph.D. students. Leadership Recognition at Dubai Global Energy Forum.

Research Focus🔬

Thermal Management in applications like solar energy and intermittent applications. Innovative design of heat pipes, phase change materials, and metal foam. Microfluidics and MEMS for advanced energy systems. Nondestructive testing using eddy current thermography. Energy conversion and methane/hydrogen transportation modeling.

Publication  Top Notes

Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts (2001) – This paper, published in International Journal of Heat and Mass Transfer, explores enhancing heat transfer in parallel-plate channels by inserting porous materials. The findings provide a solution to improving thermal performance in industrial applications. 🔥💨

Analysis of a Solar Chimney Power Plant in the Arabian Gulf Region (2011) – Published in Renewable Energy, this work focuses on assessing the viability of solar chimney power plants in the Arabian Gulf, a critical region for renewable energy studies. 🌞🌍

Experimental Study of Vortex Tube Energy Separation under Different Tube Design (2018) – Published in Experimental Thermal and Fluid Science, it examines the energy separation performance of vortex tubes based on different tube designs, contributing to better energy utilization in cooling systems. 🌀⚡

Hydrogen Supplement Co-Combustion with Diesel in Compression Ignition Engines (2015) – This study, published in Renewable Energy, investigates the performance of compression ignition engines fueled by a hydrogen-diesel blend, promoting eco-friendly combustion methods. 🚗💨

Analysis of Solar Chimney Power Plant Utilizing Chimney Discrete Model (2013) – Published in Renewable Energy, this paper models solar chimney power plants for better energy efficiency and sustainable energy generation. 🌞🏭

Loop Heat Pipe (LHP) Development by Utilizing Coherent Porous Silicon (CPS) Wicks (2002) – The paper discusses the development of loop heat pipes (LHP) using advanced CPS wick materials for improved thermal performance in various aerospace applications. 🚀❄️

On Forced Convection in Channels Partially Filled with Porous Substrates (2002) – Published in Heat and Mass Transfer, this research examines the impact of porous substrates on forced convection, offering insights into fluid dynamics and heat transfer enhancement. 🌬️🔬

Experimental Investigation of Dual Engine Performance Using Variable LPG Composition Fuel (2013) – This study, published in Renewable Energy, evaluates the performance of engines running on LPG and its impact on efficiency and emissions. 🔋💡

Comparative Effectiveness of Different Phase Change Materials to Improve Cooling Performance of Heat Sinks for Electronic Devices (2016) – Published in Applied Sciences, this paper investigates various phase change materials (PCMs) for improving the cooling performance of heat sinks, crucial for electronic devices’ longevity. 🖥️❄️

Review of Hydrogen-Gasoline SI Dual Fuel Engines: Engine Performance and Emission (2023) – A comprehensive review published in Energy Reports that discusses the performance and emission characteristics of hydrogen-gasoline dual fuel engines. 🛠️⚡

 

Conclusion

The candidate’s background, leadership skills, and significant contributions to both academia and industry make them a strong contender for the Best Researcher Award. Their impressive educational credentials, coupled with extensive managerial roles and supervision of high-caliber research, establish them as a well-rounded leader in their field. With a bit more focus on interdisciplinary collaboration and increasing their publication impact, they are poised to further shape the future of mechanical engineering research in thermal management and fluid dynamics. Their work holds great potential for advancing technologies that influence critical areas such as energy efficiency, sustainability, and innovation in heat transfer systems.

Kangkan Choudhury | Nanofluids | Excellence in Research

Dr.  University of Science and Technology Meghalaya, India

Dr. Kangkan Choudhury, an Assistant Professor in Mathematics at the University of Science and Technology Meghalaya, holds a Ph.D. from Gauhati University. His research focuses on heat and mass transfer in Newtonian flows, with a significant emphasis on MHD flow and thermal diffusion. He has published numerous articles in UGC-approved and SCOPUS-indexed journals and contributed to book chapters in mathematics and statistics. His work has been presented at prestigious national and international conferences. With extensive teaching experience, Dr. Choudhury remains a dedicated academic, contributing significantly to applied mathematics research.

Professional Profiles:

🎓 Educational Qualification:

Ph.D. (Mathematics): Gauhati University (2019)Supervisor: Prof. Nazibuddin Ahmed, Ph.D., D.Sc.Title: Heat and Mass Transfer in some Newtonian Flows: A Theoretical InvestigationM.Sc. (Mathematics): Gauhati University (2012)B.Sc. (Mathematics): Gauhati University (2010)

💼 Work Experience:

PGT (Mathematics) at Sreeram Academy, Pathsala (01-02-2013 to 31-12-2014)Lecturer at Vidyasagar Academy, Dudhnoi (01-01-2015 to 31-12-2017)Assistant Professor at Dudhnoi College, Dudhnoi (01-01-2018 to 31-12-2019)Assistant Professor in the Department of Mathematics, University of Science and Technology Meghalaya (Current)

Strengths for the Award

  1. Extensive Research Contributions: Dr. Kangkan Choudhury has made significant contributions to the field of mathematics, particularly in heat and mass transfer, MHD (magnetohydrodynamics) flow, and porous media. His work includes numerous publications in reputable journals and conferences, showcasing a strong research profile.
  2. Diverse Publication Record: His research is well-documented through a variety of publications, including high-impact journals and book chapters. This demonstrates both breadth and depth in his research interests, from theoretical investigations to practical applications.
  3. Collaborative Work: Dr. Choudhury’s collaborations with prominent researchers such as Prof. Nazibuddin Ahmed reflect his ability to work effectively in research teams, which is a valuable trait for advancing scientific knowledge and fostering interdisciplinary approaches.
  4. Presentation Experience: His active participation in national and international conferences indicates a strong presence in the research community. Presenting papers at such events also highlights his commitment to sharing knowledge and engaging with other experts in his field.
  5. Educational Background and Work Experience: With a Ph.D. from Gauhati University and a solid work history in both teaching and research roles, Dr. Choudhury has a well-rounded academic and professional background. His role as an Assistant Professor and previous positions illustrate his dedication to both education and research.

Areas for Improvement

  1. Broader Impact and Citations: While Dr. Choudhury has published extensively, increasing the visibility and impact of his research through citations and collaborations with international researchers could further enhance his profile. Focus on publishing in high-impact journals and seeking out more collaborative opportunities might help.
  2. Interdisciplinary Research: Expanding research into interdisciplinary areas or emerging fields within applied mathematics could open up new avenues for impactful contributions. Exploring connections with other scientific domains may lead to innovative solutions and applications.
  3. Grant and Funding Acquisition: Actively seeking research grants and funding opportunities could support larger and more ambitious projects, leading to greater advancements in his field. Developing grant-writing skills and applying for competitive research funding would be beneficial.
  4. Public Engagement and Outreach: Engaging with a broader audience through public lectures, workshops, or popular science writing could help raise awareness of his research and its implications. This could also strengthen his position as a leading researcher in his field.

 

✍️Publications Top Note :

 

Heat and Mass Transfer in Three-Dimensional Flow Through a Porous Medium with Periodic Permeability
Authors: N Ahmed, K Choudhury
Journal: Heat Transfer—Asian Research
Volume: 48, Issue: 2, Pages: 644-662
Citations: 20
Year: 2019

Soret Effect on Transient MHD Convective Flow Past a Semi-Infinite Vertical Porous Plate with Heat Sink and Chemical Reaction
Authors: K Choudhury, N Ahmed
Journal: Applications and Applied Mathematics: An International Journal (AAM)
Volume: 13, Issue: 2, Page: 15
Citations: 12
Year: 2018

Diffusion-Thermo Effect on MHD Dissipative Flow Past a Porous Vertical Plate Through Porous Media
Authors: K Choudhury, S Agarwalla, N Ahmed
Journal: Heat Transfer
Volume: 51, Issue: 7, Pages: 6836-6855
Citations: 6
Year: 2022

Three Dimensional Hydromagnetic Convective Flow Past a Porous Vertical Plate with Sinusoidal Suction in Slip Flow Regime
Authors: N Ahmed, K Choudhury, K Chamuah
Journal: Mathematics in Engineering, Science & Aerospace (MESA)
Volume: 11, Issue: 4
Citations: 5
Year: 2020

Oscillatory Flow of a Viscous Conducting Fluid Through a Uniformly Moving Vertical Circular Cylinder Under Pressure Gradient
Authors: K Chamuah, N Ahmed, K Choudhury
Journal: Journal of Mathematical Computational Science
Volume: 11, Issue: 4, Pages: 4183-4202
Citations: 3
Year: 2021

Radiation Effect on MHD Flow Past a Porous Vertical Plate in the Presence of Heat Sink
Authors: K Choudhury, N Ahmed, K Chamuah
Journal: Heat Transfer
Volume: 51, Issue: 6, Pages: 5302-5319
Citations: 2
Year: 2022

Hydromagnetic Free Convective Flow Past a Vertical Plate Moving with Time Dependent Plate Velocity
Authors: N Ahmed, K Choudhury, S Agarwalla
Journal: Far East Journal of Applied Mathematics
Volume: 96, Issue: 6, Pages: 331-350
Citations: 2
Year: 2017

Hydromagnetic Convective Flow Past a Porous Vertical Plate with Constant Heat Flux and Heat Sink
Authors: K Choudhury, S Agarwalla
Journal: Mathematics in Engineering, Science & Aerospace (MESA)
Volume: 14, Issue: 2
Citations: 1
Year: 2023

Unsteady MHD Mass Transfer Flow Past a Temporarily Accelerated Semi-Infinite Vertical Plate in Presence of Thermal Diffusion with Ramped Wall Temperature
Authors: K Choudhury, N Ahmed
Journal: Mathematical Modelling of Engineering Problems
Volume: 6, Issue: 2
Citations: 1
Year: 2019

Unsteady MHD Free Convective Flow Past a Moving Vertical Plate in Presence of Heat Sink
Authors: K Choudhury, N Ahmed
Journal: Journal of Rajasthan Academy of Physical Sciences
Volume: 16, Issues: 1-2, Pages: 21-39
Citations: 1
Year: 2017

Thermo-Diffusion and Diffusion-Thermo Effects on MHD Convective Flow Past an Impulsively Started Vertical Plate Embedded in Porous Medium
Authors: K Choudhury, S Sharma, S Ahmed
Journal: East European Journal of Physics
Pages: 201-208
Year: 2024

Natural Convection MHD Mass Transfer Through an Infinite Vertical Porous Plate in the Existence of Radiation Embedded in Porous Medium
Authors: K Choudhury, S Sharma
Journal: Heat Transfer
Volume: 53, Issue: 3, Pages: 1031-1049
Year: 2024

MHD Free Convective Heat and Mass Transfer Flow Passing Through Semi-Infinite Plate for Cu-Water and TiO2-Water Nanofluids in Presence of Radiation
Authors: K Choudhury, S Sharma
Journal: ZAMM—Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
Year: 2024

Mathematical Modelling of Engineering Problems
Authors: R Chaudhury, S Islam
Journal: Link
Volume: 8, Issue: 2, Pages: 179-188
Year: 2021

Chapter-10: Hydromagnetic Dissipative Flow Past a Porous Vertical Plate in Presence of Thermal Radiation
Authors: K Choudhury, N Ahmed
Book Name: Research Trends in Mathematics and Statistics
Publisher: Akinik Publications
ISBN: 978-93-90541-03-4
Pages: 133
Year: 2020

Heat and Mass Transfer in Some Newtonian Flows: A Theoretical Investigation
Author: C Kangkan
Location: Guwahati
Year: [Year not provided]

Conclusion

Dr. Kangkan Choudhury is a strong candidate for the Best Researcher Award, given his substantial contributions to mathematics and heat transfer research. His extensive publication record, collaboration with esteemed researchers, and active participation in conferences underscore his dedication and impact in the field. By focusing on increasing the visibility of his work, exploring interdisciplinary research, securing additional funding, and engaging with the public, Dr. Choudhury can further enhance his profile and contribute even more significantly to his field.