Mr. Dhaneshwar Prasad Sahu | Natural fibre-based composites structures | Best Researcher Award
Assistant Professor at Vignan Institute of Imformation Technology, Visakhapatnam, A.P, India
Publication Profile
Publications 📖
Assistant Professor at Vignan Institute of Imformation Technology, Visakhapatnam, A.P, India
A dedicated Postdoctoral Candidate specializing in Immunology and Rheumatology at Mashhad University of Medical Sciences (MUMS), this researcher excels in innovative immunological studies. With an MD and Ph.D. from MUMS, they bring a decade of expertise to cutting-edge research. Their academic journey is complemented by advanced lab techniques, software proficiency, and active participation in global congresses, reflecting a commitment to understanding autoimmune diseases and COVID-19 immunopathology.
Publication Profile
“Multisystem Inflammatory Syndrome and Autoimmune Diseases Following COVID-19: Molecular Mechanisms and Therapeutic Opportunities” Frontiers in Molecular Biosciences, 2022
“Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender” Frontiers in Neuroscience, 2022
“The Role of Melatonin as an Adjuvant in the Treatment of COVID-19: A Systematic Review” Heliyon, 2022
“Venous Thromboembolism in Viral Diseases: A Comprehensive Literature Review” Health Science Reports, 2023
The candidate’s profile clearly demonstrates the potential to be an outstanding Best Researcher Award nominee. With an exceptional academic background, ongoing contributions to critical immunological research, and active participation in both national and international research communities, the candidate is highly deserving of recognition. However, enhancing the global impact of their research through additional publications and expanding their focus into broader immunology topics could further solidify their position as a leading researcher. Nonetheless, the candidate’s current achievements already place them among the top in their field.
🌟 Enthusiastic researcher with expertise in thermophysical analysis and wood thermal insulation. 🧪 Skilled in advanced techniques like Hot Disk 2500s, fostering sustainable practices. 🌍 Active contributor to international conferences and academic communities. 📚 Passionate about innovative research in materials science and eco-friendly solutions. 🎓
Publication Profile
Thermal Analysis of Rocks and Building Materials
Non-planar Carbonate Rock Surfaces
📜 Title: The non-planar surface of carbonate rock sample affecting the behaviour of thermal response and the measurement of thermophysical parameters by Pulse Transient Technique.
📚 Journal: Thermal Science and Engineering Progress (2021).
🔍 Focus: Investigated how surface irregularities influence thermal behavior during parameter measurement.
👥 Collaborators: V. Boháč, P. Dieška, G. Goetzl.
🔗 Citations: 11.
Limestone Thermal Properties
📜 Title: Thermal properties of limestone rock by pulse transient technique using slab model accounting for the heat transfer coefficient and heat capacity of heat source.
📚 Journal: AIP Conference Proceedings (2020).
🔍 Focus: Explored slab model application for precise thermophysical measurements.
🔗 Citations: 7.
Sustainable Building Envelopes
📜 Title: Investigation of thermophysical properties of Turkey oak particleboard for sustainable building envelopes.
📚 Journal: Developments in the Built Environment (2023).
🔍 Focus: Analyzed particleboard properties for eco-friendly construction.
🔗 Citations: 5.
Innovations in Methodologies
Carbonate Rock Thermophysical Models
📜 Title: Thermophysical Parameters of Carbonate Rock estimated by Slab Model Developed for Pulse Transient Technique.
📚 Journal: Measurement Science Review (2020).
🔍 Focus: Developed slab models to enhance thermophysical parameter accuracy.
🔗 Citations: 4.
Uncertainty Analysis of Pulse Transient Models
📜 Title: Uncertainty Analysis of Pulse Transient Model Accounting Thermal Contact Effect.
📚 Conference: 12th International Conference on Measurement (2019).
🔍 Focus: Evaluated model reliability under thermal contact variations.
🔗 Citations: 1.
Advancements in Sustainable Wood and Particleboards
Historical Wood Analysis
📜 Title: Investigation of thermophysical parameters of historical fir wood using hot disk method under room ambience.
📚 Journal: AIP Conference Proceedings (2024).
🔍 Focus: Studied historical fir wood for restoration and heritage preservation.
🔗 Citations: 1.
Low-Density Alder Wood Properties
📜 Title: Thermophysical properties of low-density Alder wood (Alnus cordata Loisel) under room ambience.
📚 Journal: AIP Conference Proceedings (2023).
🔍 Focus: Evaluated wood properties for thermal applications.
🔗 Citations: 1.
Thermal Properties of Oak Boards
📜 Title: Thermal properties of Oak high density board measured by the pulse transient method for different heat pulse energy.
📚 Journal: AIP Conference Proceedings (2023).
🔍 Focus: Investigated how energy variations affect board properties.
🔗 Citations: 1.
Siberian Larch Wood Properties
📜 Title: Effect of thermo-vacuum modification on selected chemical, physical, and mechanical properties of Siberian larch (Larix sibirica L.) wood.
📚 Journal: Wood Material Science & Engineering (2023).
🔍 Focus: Analyzed thermo-vacuum modifications on larch wood.
🔗 Citations: 3.
Pulse Transient Technique for Concrete
📜 Title: Thermophysical properties of concrete measured by the pulse transient method using slab and cuboid models.
📚 Journal: AIP Conference Proceedings (2020).
🔍 Focus: Compared models for measuring concrete’s thermal properties.
🔗 Citations: 2.
Energy Storage in Natural Materials
📜 Title: The development of physical models and methods for measuring the thermal properties of natural materials suitable for the energy storage of the thermal energy in the earth’s crust.
📚 Journal: Self-published Research (2021).
🔍 Focus: Explored natural materials for geothermal energy storage.
🔗 Citations: 2.
The candidate stands out as a strong contender for the Best Researcher Award due to their innovative research, dedication to sustainability, and significant academic contributions. Their strengths in utilizing cutting-edge methodologies and contributing to eco-friendly construction practices make them an exemplary leader in their field. Addressing areas for improvement, such as expanding the scope of research and enhancing public engagement, could further amplify their impact. Nonetheless, their accomplishments and commitment to sustainable innovation position them as a deserving recipient of this prestigious recognition.