SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Dr. SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Postdoctoral Researcher, Sungkyunkwan University, South Korea

Dr. Samanth Kokkiligadda is a research professor in Chemical Engineering at Sungkyunkwan University, South Korea, specializing in sustainable energy solutions. With a Ph.D. in Physics, his expertise spans nanomaterials, energy storage, and biomass conversion. His work integrates biopolymers and flexible films to advance eco-friendly supercapacitors and photocurrent applications. Dr. Kokkiligadda has received prestigious awards, including the SKKU Innovation Research Fellowship and a gold medal in Chemistry. Proficient in nanomaterials functionalization, quantum dots, and electrochemical techniques, he contributes significantly to material synthesis and energy conversion research.

Profile

orcid

🎓 Education

Ph.D. in Physics (2019–2023), Sungkyunkwan University, South Korea 🏅 Dissertation: “Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors.” Awarded the Best SKKU Innovative Research Award. M.Sc. in Physics (2016–2018), P.B. Siddhartha College of Arts & Sciences, India 🎓 Specialization in Condensed Matter Physics with an 80% aggregate score. B.Sc. in M.P.C. (2013–2016), Krishna University, India 🏆 Graduated with 91.3%, earning a gold medal in Chemistry.

💼 Experience

BK21+ Postdoctoral Researcher, Sungkyunkwan University, South Korea (Present) 🔬 Researching DNA-based nanostructures for photocurrent and supercapacitor applications. Developing high-performance biopolymer-based energy storage devices. Graduate Researcher, Sungkyunkwan University, South Korea (2019–2023) 🧪 Conducted extensive studies on functional nanomaterials, quantum dots, and MXenes. Specialized in electrode synthesis for energy storage applications.

🏆 Awards & Honors 

SKKU Innovation Research Fellowship (BK21), 2022 🌟 All India 14th Rank, UGC Merit Scholarship, 2016-17 🏅Pratibha Award & Gold Medal in Chemistry, Krishna University, 2016 🏆 KU-SET 17th Rank, Andhra Pradesh University Entrance Test 🎖 2nd Prize in Photography, Cognition Nalanda University, 2018 📸 1st Prize in Quiz, Andhra Pradesh Librarian Association, Avanigadda 🏅

🔬 Research Focus 

Dr. Kokkiligadda’s research focuses on nanomaterials for energy storage and conversion. His work integrates DNA-based nanostructures, biopolymer synthesis, and flexible energy storage films. He explores quantum dots, MXenes, and hybrid biomaterials to develop high-performance, eco-friendly supercapacitors and photocurrent devices. His expertise spans scanning electron microscopy, spectroscopy techniques, thermal vapor deposition, and electrode fabrication for batteries and PEC applications.

Publications

“Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors” 🔋

“Synthesis of Biomass-based Hybrid Nanomaterials for Sustainable Energy Conversion” 🌱

“Functionalization of Quantum Dots for High-Performance Energy Devices” ⚡

“MXenes in Flexible Supercapacitors: A Novel Approach” 🏭

“Electrode Fabrication Techniques for Advanced Energy Storage” ⚙️

“Innovative DNA Nanostructures for Photovoltaic Applications”

Conclusion:

Samanth Kokkiligadda is a highly deserving candidate for the Best Researcher Award due to his exceptional contributions to nanomaterials, energy storage, and sustainable innovations. With his expertise and growing recognition, he has the potential to become a key figure in the future of green energy research. Strengthening collaborations and increasing high-impact publications will further solidify his standing as a top-tier researcher.

Anne Maynadier | Stockage de l’hydrogène | Best Researcher Award

Assist. Prof. Dr Anne Maynadier | Stockage de l’hydrogène | Best Researcher Award

Maître de conférences, Institut FEMTO ST, France

Anne Maynadier is an Associate Professor at IUT de Besançon Vesoul, University of Franche-Comté, specializing in applied mechanics and hydrogen storage 🔋. She obtained her PhD in Engineering from LMT Cachan, focusing on thermomechanical coupling in shape memory alloys 🏗️. She has held academic positions at INSA Lyon and UFC/FEMTO-ST Institute, contributing to mechanical field measurements and solid-state hydrogen storage research. She has supervised multiple PhD theses, led key research projects, and actively participated in hydrogen energy outreach programs 🌍.

Profile

🎓 Education:

2009-2012 – PhD in Engineering, LMT Cachan, focusing on thermomechanical coupling in shape memory alloys 📊 2005-2009 – ENS Cachan, Mechanical Engineering, specializing in materials mechanics 🔧  Master’s in Mechanics of Materials (MAGIS) – Advanced training in mechanical behavior of materials 📚  2003-2005 – Preparatory Classes (PTSI-PT), Lycée Jean Dupuy ✏️  2003 – Scientific Baccalaureate, Engineering Sciences Option, Mention B 🎓

💼 Experience:

2015-Present – Associate Professor at IUT Besançon Vesoul, UFC/FEMTO-ST Institute, focusing on hydrogen storage research ⚙️ 2013-2015 – Associate Professor at INSA Lyon/LAMCOS, specializing in mechanical field measurements and fracture mechanics 🏗️ 2012-2013 – Postdoctoral Researcher at UFC/FEMTO-ST Institute, working on thermomechanical coupling in materials  2009-2012 – PhD Researcher at LMT Cachan, studying kinematic and thermal field measurement in shape memory alloys 📊

🏆 Awards & Honors:

1st Place (2008) – External Agrégation in Mechanical Engineering 🏆  Grant Recipient – Multiple research funding awards from CNRS, Bourgogne-Franche-Comté Region, and EIPHI 💰  Organizer & Committee Member – International Summer School (2022), JNC Conference (2023), Hydrogen Research Networks 🌍 STEM Outreach Advocate – Active in “Women in Science” and “La SI au féminin” initiatives 👩‍🔬

🔍 Research Focus:

🔬 Hydrogen Storage – Investigating solid-state hydrogen storage using intermetallic hydrides 🔋 Thermomechanical Field Measurement – Advanced DIC & IR techniques for material analysis 📸  Fracture Mechanics – Researching photovoltaic silicon wafer failure mechanisms 🏭 Hydride Bed Simulation – Studying self-fragmentation (decrepitation) in hydrogen reservoirs 📡 Sustainable Energy Solutions – Developing safe and efficient hydrogen storage systems for clean energy 🌱

Publications

Underlying Causes of the Improved Storage Properties of TiMn1,5 by Annealing Treatment

Multiscale Elastic Modulus Characterization of Ti0.5Fe0.45Mn0.05, an Iron–Titanium–Manganese Alloy Dedicated to Hydrogen Storage

Hydrogen Storage: Different Technologies, Challenges and Stakes. Focus on TiFe Hydrides

 

Conclusion

Anne Maynadier is a strong candidate for the Best Researcher Award, given her pioneering contributions to hydrogen storage research, extensive academic impact, and leadership in scientific outreach. While international collaborations, high-impact publications, and industry engagement could further strengthen her profile, her expertise and dedication make her a deserving nominee.

Guowen Sun | lithium-ion batteries | Best Researcher Award

Dr. Guowen Sun | lithium-ion batteries | Best Researcher Award

student at  Lanzhou University, China

Guowen Sun, a distinguished researcher at Lanzhou University’s School of Physical Science and Technology, excels in materials science, physics, and mechanics. With expertise in composites, nanomaterials, and lithium-ion batteries, he has 18 high-impact publications, including in ACS Nano and Angewandte Chemie. His work has garnered 330 citations and an H-index of 9, reflecting his influence in advancing energy storage technologies and materials characterization.

 

Professional Profiles:

scholar

Education 🎓

Bachelor’s in Materials Science and Engineering, Lanzhou University 🇨🇳. Master’s in Materials Physics and Chemistry, Lanzhou University 🇨🇳. PhD in Materials Science and Technology, Lanzhou University 🇨🇳. Guowen honed his expertise in cutting-edge material properties, X-ray diffraction, and reaction kinetics during his academic journey.

Experience 💼:

Assistant Researcher, Lanzhou University 🌟.Conducted breakthrough studies in lithium-sulfur and lithium-ion batteries ⚡.Published 18 impactful articles and mentored students in advanced material mechanics 🔬.

Awards and Honors 🏅:

“Young Researcher Excellence Award” for energy storage research 🏆.Recognized as a top contributor in materials physics conferences 🌍.Multiple best paper awards in international journals 🥇.

Research Focus 🔍:

Enhancing lithium-sulfur battery performance with defect-rich materials ⚛️.Investigating microstructure optimization for high-rate and stable batteries 🔋.Developing nanomaterials and electrodes with catalytic properties for energy applications 🧪

✍️Publications Top Note :

Lithium–Sulfur Batteries (Li-S):

Investigating surface strain effects on MoS₂ for cathode performance enhancement.

External magnetic field-induced spin effects to boost reaction kinetics.

Developing novel vanadium sulfides (V₅S₈, NiAs-type) and intercalation engineering in MoS₂ for high-rate and ultra-stable Li-S batteries.

Advanced Catalytic Materials:

Catalysis mechanisms in carbon-encapsulated strained MoNi₄ nanoalloys and defect-rich MoS₂ nanosheets.

Hierarchical catalytic structures for fiber-shaped solar cells and polysulfide conversion.

Nanostructured Materials and Functional Design:

Co₃O₄/Fe₂O₃ nanoparticle composites for lithium-ion batteries.

Sulfur-induced porous carbon composites and advanced hard carbon anodes for Li-ion storage.

Interdisciplinary Applications:

Enhancing photoanode performance in dye-sensitized solar cells.

Surface modification techniques using quantum dot decorations and catalytic partial nitriding.

Conclusion

Dr. Guowen Sun is an exceptional researcher whose work in lithium-ion and lithium-sulfur batteries is at the forefront of energy storage technology. His innovative approaches and impactful publications make him a strong candidate for the Best Researcher Award. Addressing real-world applications and expanding his interdisciplinary network could elevate his contributions even further. With his current trajectory, Dr. Sun is well-positioned to lead transformative advancements in sustainable energy solutions.

Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Assoc. Prof. Dr Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Associate Professor at University of Shanghai for Science and Technology, China

A Visiting Scholar with the Hua Zhang Group at City University of Hong Kong, this researcher has a rich background in applied and physical chemistry, with a specialization in nanomaterial design and catalytic materials for energy and environmental applications. They have held academic roles as a Lecturer at the University of Shanghai for Science and Technology and completed postdoctoral research at Fudan University. Known for their innovative contributions, they have published over 40 SCI papers and hold five patents in catalytic materials and nanotechnology.

Publication Profile

orcid

Education 🎓 

Ph.D. in Physical Chemistry, East China University of Science and Technology (2012-2017) – Focused on nanomaterials, specifically liposomes, polymers, micelles, and upconversion nanomaterials, under Prof. Honglai Liu (Changjiang Scholar). B.Sc. in Applied Chemistry, Dalian Polytechnic University (2008-2012) – Foundation in chemistry with a focus on applied chemical principles. Postdoctoral Fellow, Material Science, Fudan University (2017-2019) – Developed an electrochemical testing platform for research in catalytic efficiency for HER/OER/CER reactions, under Prof. Dalin Sun.

Experience👨‍🏫 

Lecturer, University of Shanghai for Science and Technology (2019-2024) – Established an experimental platform for catalytic materials in HER/OER/CER, with a focus on water-splitting reactions and pollution mitigation.  Postdoctoral Researcher, Fudan University (2017-2019) – Built a robust electrochemical testing platform for industrial-grade water-splitting projects. Visiting Scholar, Hua Zhang Group, City University of Hong Kong (2024-Present) – Engaged in innovative nanomaterial research for energy applications.

Awards and Honors🏆 

Shanghai Natural Science General (2023) Shanghai “Medical and Industrial Intersection” project (2023) National Natural Science Foundation of China (2022) Shanghai Sailing Program (2020) First-Class Funding, China Postdoctoral Fund (2019)

Research Focus🔬 

Catalytic materials for sustainable energy – Designs metal boride and phosphide catalysts for high-efficiency HER/OER/CER reactions. Water-splitting and hydrogen production – Focuses on catalytic materials for efficient hydrogen production through water splitting. Water pollution mitigation – Develops electrodes for chlorine evolution reactions to combat water pollution. Nanomaterial synthesis – Specializes in liposomes, micelles, and mesoporous silica for energy storage and environmental applications.

Publication  Top Notes

Corrosion-resistant titanium-based electrodes synergistically stabilized with polymer for hydrogen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.061

Contributors: Shuo Weng, Xianzuan Deng, Jiayi Xu, Yizhou Wang, Mingliang Zhu, Yuqin Wang, Weiju Hao

Mild and rapid construction of Ti electrodes for efficient and corrosion-resistant oxidative catalysis at industrial-grade intensity

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.010

Contributors: Rui Xiao, Dingkun Ji, Liugang Wu, Ziyan Fang, Yanhui Guo, Weiju Hao

Regulating coordination environment in metal-organic framework@cuprous oxide core-shell catalyst for promoting electrocatalytic oxygen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: January 2025

DOI: 10.1016/j.jcis.2024.09.040

Contributors: Hui Wang, Zijian Wang, Jin Ma, Jian Chen, Hong Li, Weiju Hao, Qingyuan Bi, Shuning Xiao, Jinchen Fan, Guisheng Li

CDs “inserted” abundant FeB-based electrode via “local photothermal effect” strategy toward efficient overall seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D4QI00415A

Contributors: Shiheng Liang, Liugang Wu, Yiming Wang, Yuqi Shao, Hongyuan Song, Ziliang Chen, Weiju Hao

Construction of a phosphorus-based integrated electrode for efficient and durable seawater splitting at a large current density

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02222F

Contributors: Jiajing Xia, Lujia Zhang, Yizhou Wang, Weiju Hao

Reasonable regulation of flexible sulfur-based bifunctional catalytic electrodes for efficient seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02575F

Contributors: Fengjing Lei, Xunwei Ma, Xinyun Shao, Ziyan Fang, Yuqin Wang, Weiju Hao

Self-hydrolysis of gelatin-coupled boride electrode enabling ultrastability for overall seawater splitting at industrial environment

Journal: Materials Today Energy

Publication Date: December 2024

DOI: 10.1016/j.mtener.2024.101705

Contributors: Weiju Hao, Xinke Huang, Rikai Liang, Jinli Fan, Jia Liang, Yanhui Guo, Qingyuan Bi, Jichen Fan, Ziliang Chen

Conclusion

With an impressive track record of research, patents, publications, and funding achievements, [Name of the Researcher] is a strong candidate for the “Best Researcher Award.” Their expertise in catalytic materials and hydrogen generation, combined with impactful innovations, places them at the forefront of sustainable energy research. Continued exploration of interdisciplinary applications, along with enhanced global engagement and mentorship roles, would further solidify their standing as an influential leader in the field. Given their achievements, commitment to sustainable innovation, and ongoing contributions to science and technology, the nominee is exceptionally well-suited for this prestigious award.

Ze Yang | self-powered system | Best Researcher Award

Assist Prof Dr. Ze Yang | self-powered system | Best Researcher Award

Assist Prof Dr at Tsinghua University, China

Dr. Ze Yang is a Postdoctoral Research Fellow at Tsinghua University’s Intelligence and Biological Machinery Laboratory, specializing in energy harvesting and mechanical engineering. With a Ph.D. from China University of Geosciences (Beijing), he has developed innovative systems like triboelectric nanogenerators (TENGs) and energy-harvesting backpacks. His work focuses on electrostatic adsorption and charge-pumping methods. Dr. Yang has published extensively in top-tier journals like Nano Energy and ACS Nano, contributing significantly to advancements in nanoenergy. He has earned multiple awards for his research excellence and is fluent in Mandarin and English.

Publication Profile

Education🎓

Dr. Ze Yang holds a Ph.D. in Mechanical Engineering from China University of Geosciences (Beijing), obtained in 2022. Before that, he earned a Master’s degree in Mechanical Engineering from Beihua University (2018) and a Bachelor’s degree from Hubei University of Art and Science (2016). During his Ph.D., he participated in a joint training program with Tsinghua University, gaining hands-on experience in cutting-edge research on mechanical systems and energy harvesting technologies. Currently, he is a Postdoctoral Research Fellow at Tsinghua University. 📖

Experience⚙️

Dr. Ze Yang’s research journey began with his role as a Graduate Research Assistant at Beihua University, focusing on rehabilitation bed systems. At Tsinghua, he designed advanced TENGs and energy-harvesting systems. His projects include developing load-suspended and charge-pumping backpacks, which use 3D printing and innovative designs to reduce impact and improve energy efficiency. As a Postdoctoral Fellow, he continues his groundbreaking work on non-contact electrostatic induction and wind energy harvesting. He is proficient in mechanical drawing and 3D printing. 🛠️🎯🚀

Awards and Honors 🏆

Dr. Ze Yang has received numerous accolades for his academic and research excellence. These include the prestigious National Scholarship for Excellent Academic Performance (Top 2%) in 2017, First Prize for “Excellent Academic Report” at Tsinghua University in 2021, and the Best Poster Award at the 5th International Conference on Nanoenergy and Nanosystems in 2021. His innovative work on energy-harvesting technologies has also garnered wide recognition within the mechanical engineering field.

Research Focus🌍

Dr. Ze Yang’s research focuses on mechanical engineering, triboelectric nanogenerators (TENGs), and energy harvesting. His groundbreaking work includes developing charge-pumping systems and non-contact electrostatic induction for energy generation from human motion and environmental sources like wind. He also focuses on minimizing material fatigue and improving output efficiency through innovative methods like charge pumping and voltage stabilization. His research has major implications for renewable energy and impact reduction technologies.

 

Publication  Top Notes

Technological Progress and Commercial Applications: Choi et al. (2023) have explored the evolution of TENG technology and its transition from laboratory innovations to commercial applications. Their review in ACS Nano covers breakthroughs in material development, system integration, and potential industrial uses .

Flexible Tactile Sensors: Song et al. (2022) introduced a flexible triboelectric tactile sensor capable of recognizing material and texture simultaneously. This innovation in Nano Energy highlights the sensor’s potential use in robotics and prosthetics .

Energy Harvesting from Wearables: Yang et al. (2021) presented a “power backpack” designed for energy harvesting and reduced load impact. The device utilizes a TENG to generate electricity from human movement, providing a practical energy source for portable electronics .

Charge Pumping and Voltage Stabilization: Research led by Yang et al. (2021) focuses on improving the efficiency of TENGs by incorporating a charge pumping mechanism, stabilizing the voltage, and boosting the current output .

Biosystems and Self-powered Devices: Shen et al. (2022) reviewed the application of TENGs in biosensing and self-powered systems. They emphasize challenges like device miniaturization and material optimization, as well as their use in health monitoring and wearable technologies .

Conclusion

Z. Yang is undoubtedly a strong candidate for the Best Researcher Award, with a proven track record of innovation, excellence in mechanical engineering, and significant contributions to energy harvesting technologies. His strengths in system design, theoretical analysis, and practical applications make him an asset to the field. By expanding his collaborative network and incorporating AI technologies into his research, Yang has the potential to further enhance his contributions and solidify his status as a leading researcher.