Yu Han | lithium-ion battery | Best Researcher Award

Dr. Yu Han | lithium-ion battery | Best Researcher Award

lecturer, North China University of Technology, China

Yu Han is a lecturer at the School of Energy Storage Science and Engineering, North China University of Technology. She received her PhD from Tsinghua University and currently focuses on Si-based anode materials for lithium-ion batteries and new energy conversion & storage. Han’s research aims to improve energy storage technology and promote sustainable energy solutions.

Profile

scopus

Education 🎓

PhD, Institute of Nuclear and New Energy Technology, Tsinghua University (degree date not specified) Current affiliation: School of Energy Storage Science and Engineering, North China University of Technology, Beijing, China

Experience 🧪

Lecturer, School of Energy Storage Science and Engineering, North China University of Technology, Beijing, China (current)  Research focus on Si-based anode materials for lithium-ion batteries and new energy conversion & storage

Awards & Honors🏆

Unfortunately, the provided text does not mention any specific awards or honors received by Yu Han.

Research Focus 🔍

Si-based anode materials for lithium-ion batteries  New energy conversion & storage  Energy storage technology Sustainable energy solutions

Publications📚

Triboelectric materials with UV protection, anti-bacterial activity, and green closed-loop recycling for medical monitoring

Polymer-based solid electrolyte with ultra thermostability exceeding 300 °C for high-temperature lithium-ion batteries in oil drilling industries

Conclusion

Yu Han demonstrates a strong foundation in energy storage research, particularly in Si-based anode materials for lithium-ion batteries. However, to strengthen her candidacy for the Best Researcher Award, it would be beneficial to provide more information on her research output, awards, and honors, as well as any collaborative or international research experiences.

Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Assoc. Prof. Dr Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Associate Professor at University of Shanghai for Science and Technology, China

A Visiting Scholar with the Hua Zhang Group at City University of Hong Kong, this researcher has a rich background in applied and physical chemistry, with a specialization in nanomaterial design and catalytic materials for energy and environmental applications. They have held academic roles as a Lecturer at the University of Shanghai for Science and Technology and completed postdoctoral research at Fudan University. Known for their innovative contributions, they have published over 40 SCI papers and hold five patents in catalytic materials and nanotechnology.

Publication Profile

orcid

Education 🎓 

Ph.D. in Physical Chemistry, East China University of Science and Technology (2012-2017) – Focused on nanomaterials, specifically liposomes, polymers, micelles, and upconversion nanomaterials, under Prof. Honglai Liu (Changjiang Scholar). B.Sc. in Applied Chemistry, Dalian Polytechnic University (2008-2012) – Foundation in chemistry with a focus on applied chemical principles. Postdoctoral Fellow, Material Science, Fudan University (2017-2019) – Developed an electrochemical testing platform for research in catalytic efficiency for HER/OER/CER reactions, under Prof. Dalin Sun.

Experience👨‍🏫 

Lecturer, University of Shanghai for Science and Technology (2019-2024) – Established an experimental platform for catalytic materials in HER/OER/CER, with a focus on water-splitting reactions and pollution mitigation.  Postdoctoral Researcher, Fudan University (2017-2019) – Built a robust electrochemical testing platform for industrial-grade water-splitting projects. Visiting Scholar, Hua Zhang Group, City University of Hong Kong (2024-Present) – Engaged in innovative nanomaterial research for energy applications.

Awards and Honors🏆 

Shanghai Natural Science General (2023) Shanghai “Medical and Industrial Intersection” project (2023) National Natural Science Foundation of China (2022) Shanghai Sailing Program (2020) First-Class Funding, China Postdoctoral Fund (2019)

Research Focus🔬 

Catalytic materials for sustainable energy – Designs metal boride and phosphide catalysts for high-efficiency HER/OER/CER reactions. Water-splitting and hydrogen production – Focuses on catalytic materials for efficient hydrogen production through water splitting. Water pollution mitigation – Develops electrodes for chlorine evolution reactions to combat water pollution. Nanomaterial synthesis – Specializes in liposomes, micelles, and mesoporous silica for energy storage and environmental applications.

Publication  Top Notes

Corrosion-resistant titanium-based electrodes synergistically stabilized with polymer for hydrogen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.061

Contributors: Shuo Weng, Xianzuan Deng, Jiayi Xu, Yizhou Wang, Mingliang Zhu, Yuqin Wang, Weiju Hao

Mild and rapid construction of Ti electrodes for efficient and corrosion-resistant oxidative catalysis at industrial-grade intensity

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.010

Contributors: Rui Xiao, Dingkun Ji, Liugang Wu, Ziyan Fang, Yanhui Guo, Weiju Hao

Regulating coordination environment in metal-organic framework@cuprous oxide core-shell catalyst for promoting electrocatalytic oxygen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: January 2025

DOI: 10.1016/j.jcis.2024.09.040

Contributors: Hui Wang, Zijian Wang, Jin Ma, Jian Chen, Hong Li, Weiju Hao, Qingyuan Bi, Shuning Xiao, Jinchen Fan, Guisheng Li

CDs “inserted” abundant FeB-based electrode via “local photothermal effect” strategy toward efficient overall seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D4QI00415A

Contributors: Shiheng Liang, Liugang Wu, Yiming Wang, Yuqi Shao, Hongyuan Song, Ziliang Chen, Weiju Hao

Construction of a phosphorus-based integrated electrode for efficient and durable seawater splitting at a large current density

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02222F

Contributors: Jiajing Xia, Lujia Zhang, Yizhou Wang, Weiju Hao

Reasonable regulation of flexible sulfur-based bifunctional catalytic electrodes for efficient seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02575F

Contributors: Fengjing Lei, Xunwei Ma, Xinyun Shao, Ziyan Fang, Yuqin Wang, Weiju Hao

Self-hydrolysis of gelatin-coupled boride electrode enabling ultrastability for overall seawater splitting at industrial environment

Journal: Materials Today Energy

Publication Date: December 2024

DOI: 10.1016/j.mtener.2024.101705

Contributors: Weiju Hao, Xinke Huang, Rikai Liang, Jinli Fan, Jia Liang, Yanhui Guo, Qingyuan Bi, Jichen Fan, Ziliang Chen

Conclusion

With an impressive track record of research, patents, publications, and funding achievements, [Name of the Researcher] is a strong candidate for the “Best Researcher Award.” Their expertise in catalytic materials and hydrogen generation, combined with impactful innovations, places them at the forefront of sustainable energy research. Continued exploration of interdisciplinary applications, along with enhanced global engagement and mentorship roles, would further solidify their standing as an influential leader in the field. Given their achievements, commitment to sustainable innovation, and ongoing contributions to science and technology, the nominee is exceptionally well-suited for this prestigious award.

Prof João Abrantes | Solid State Ionics | Best Researcher Award

Prof João Abrantes | Solid State Ionics
| Best Researcher Award

Prof João Abrantes, Instituto Politécnico de Viana do Castelo, Portugal

Prof João Abrantes is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Academic Training 📚

The academic journey began at the University of Aveiro, where a degree in Ceramic and Glass Engineering was earned in 1988. This was followed by a master’s degree in Materials Engineering in 1992, and a Ph.D. in Materials Science and Engineering in 2001. Recently, in 2021, the title of Habilitation in Materials Science and Engineering was also obtained from the same university.

Professional Career 🏢

The professional career commenced in 1991 at the Polytechnic Institute of Viana do Castelo (IPVC) as an Assistant Professor, progressing to Auxiliary Professor in 1993 and Associate Professor in 2018. Throughout this career, several undergraduate and master courses were created, including a master in Mechanical, Energy, and Materials Engineering, approved by the national agency and set to begin in the upcoming academic year.As a group leader, significant contributions include the creation of the internal IPVC research unit, UIDM, in 2005, and its directorship until 2021. Additionally, in 2018, a strong collaboration with other IPVC groups led to the establishment of proMetheus – Research Unit in Materials, Energy, and Environment for Sustainability, where the role of Director and President of the Scientific Council was assumed.

Academic Management 🏫

Significant roles in academic management have been undertaken, such as being a member of the General Council of IPVC since its inception in 1995 until 2020, President of the General Assembly, department head, disciplinary group head, scientific area head, and a member of the scientific council for several years.

Scientific Activity 🔬

Research focuses on developing electroceramic materials for solid-state electrochemistry systems, such as solid oxide fuel cells (SOFC). This includes optimizing oxygen ion-conducting electrolytic materials and mixed ionic electronic materials (MIEC) for SOFC electrodes. The expertise in ceramic engineering facilitated the development of new cellular ceramics with phase change materials (PCM) for thermal energy storage systems.

Experimental Skills and Methodologies 🧪

The development of experimental methodologies and software tools for data acquisition is a notable achievement, including advanced electrochemical measurement techniques like impedance spectroscopy. These methods and tools have been recognized and adopted by various laboratories, including those at the University of Aveiro, University of Málaga, University of La Laguna, and Instituto de Cerámica y Vidrio CSIC.

Scientific Publications and Discoveries 📑

Almost a hundred articles have been published in scientific journals, along with over one hundred communications at international conferences. Key discoveries include:Non-stoichiometry of LaMnO3 perovskite promoting stability and conductivity, enhancing SOFC electrode performance.Controlled porosity in niobium-doped strontium titanate optimizing resistive oxygen sensors.Modeling of heat or cold discharge from encapsulated PCM aiding in device sizing.

Electrochemical Impedance Spectroscopy (EIS) 📊

The use of EIS in characterizing transport properties of MIEC materials has led to:Publications discussing EIS spectra representations.Proposing a new graphic representation of EIS spectra enhancing low-frequency effects.Studies on pyrochlore materials as solid electrolytes.EIS application in monitoring concrete corrosion and predicting ceramic material properties.

X-ray Diffraction (XRD) Expertise 📈

Specialization in XRD, particularly through Rietveld refinements, opened new research lines and collaborations, such as:Biomaterials based on hydroxyapatite.Hydration of recycled cement.Synthesis of struvite from cattle slurry and sewage sludge for use as fertilizer.

📖 Publications Top Note :

Electrochemical Impedance Spectroscopy (EIS) in Corrosion Monitoring 🧪

Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach

DV Ribeiro, JCC Abrantes

Journal: Construction and Building Materials 111, 98-104 (2016)

Citations: 315

Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete

DV Ribeiro, CAC Souza, JCC Abrantes

Journal: Revista IBRACON de Estruturas e Materiais 8, 529-546 (2015)

Citations: 155

2. Electronic Transport in Electrolytes and Ceramics 🔋

The effect of cobalt oxide sintering aid on electronic transport in Ce0.80Gd0.20O2−δ electrolyte

DP Fagg, JCC Abrantes, D Pérez-Coll, P Nunez, VV Kharton, JR Frade

Journal: Electrochimica Acta 48 (8), 1023-1029 (2003)

Citations: 153

Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics

JCC Abrantes, JA Labrincha, JR Frade

Journal: Journal of the European Ceramic Society 20 (10), 1603-1609 (2000)

Citations: 112

Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors

D Pérez-Coll, P Núñez, JR Frade, JCC Abrantes

Journal: Electrochimica Acta 48 (11), 1551-1557 (2003)

Citations: 98

3. Materials for Regenerative Medicine and Biocompatibility 🦴

Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate

SI Vieira, AR Cerqueira, S Pina, OAB da Cruz Silva, JCC Abrantes, …

Journal: Journal of Inorganic Biochemistry 136, 57-66 (2014)

Citations: 96

Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine

CF Marques, S Olhero, JCC Abrantes, A Marote, S Ferreira, SI Vieira, …

Journal: Ceramics International 43 (17), 15719-15728 (2017)

Citations: 80

4. Advanced Ceramic and Electrolyte Materials 🏺

Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO

D Pérez-Coll, P Núñez, JCC Abrantes, DP Fagg, VV Kharton, JR Frade

Journal: Solid State Ionics 176 (37-38), 2799-2805 (2005)

Citations: 84

Electronic transport in Ce0.8Sm0.2O1.9−δ ceramics under reducing conditions

JCC Abrantes, D Pérez-Coll, P Nunez, JR Frade

Journal: Electrochimica Acta 48 (19), 2761-2766 (2003)

Citations: 68

Ionic and electronic conductivity of Yb2+xTi2−xO7−x/2 materials

JCC Abrantes, A Levchenko, AV Shlyakhtina, LG Shcherbakova, …

Journal: Solid State Ionics 177 (19-25), 1785-1788 (2006)

Citations: 67

Synthesis and characterization of La2Mo2O9 obtained from freeze-dried precursors

D Marrero-López, JC Ruiz-Morales, P Nunez, JCC Abrantes, JR Frade

Journal: Journal of Solid State Chemistry 177 (7), 2378-2386 (2004)

Citations: 62

Stability and transport properties of La2Mo2O9

D Marrero-López, JC Ruiz-Morales, D Perez-Coll, P Núñez, …

Journal: Journal of Solid State Electrochemistry 8, 638-643 (2004)

Citations: 49

Synthesis and electrical transport properties of Lu2+xTi2−xO7−x/2 oxide-ion conductors

AV Shlyakhtina, JCC Abrantes, AV Levchenko, AV Knot’ko, OK Karyagina, …

Journal: Solid State Ionics 177 (13-14), 1149-1155 (2006)

Citations: 46

5. Sustainable and Circular Economy 🌍

Policy narratives of circular economy in the EU–Assessing the embeddedness of water and land in national action plans

T Fidélis, AS Cardoso, F Riazi, AC Miranda, J Abrantes, F Teles, …

Journal: Journal of Cleaner Production 288, 125685 (2021)

Citations: 45

Prof Dr Edilso Reguera – Energy Conversion and Storage Materials

Prof  Dr Edilso Reguera: Leading Researcher In Energy Conversion and Storage Materials

Congradulations, Prof  Dr Edilso Reguera, on winning the esteemed  Paper Excellence in Research  Sciencefather!

Congratulations, Prof  Dr Edilso Reguera In recognition of your outstanding contributions to the field of Energy Conversion and Storage Materials, we extend our heartfelt congratulations on receiving the prestigious  Excellence in Research  Award by ScienceFather Your dedication to advancing knowledge in clinical Energy Conversion and Storage Materials, and the exploration of Energy Conversion and Storage Materials is truly commendable.Your commitment to excellence and tireless efforts in research have not only enriched our academic community but have also contributed significantly to the broader scientific community.

May this award serve as a testament to your exceptional skills, unwavering dedication, and the impactful influence you’ve had on your field.  We look forward to witnessing your continued success and the many more groundbreaking contributions to come.Once again, congratulations on this well-deserved achievement!

Professional Profiles:

Education:

1972-1977: B. Sci. Physics: Lic. en Física, Universidad de La Habana, Cuba Título la Tesis: Distribution of carbon in welded unions of carbon steel

1977-1980: Estudios de Posgrado: Crystallography, University of Las Villas, Cuba

1984-1987: Doctorado en Ciencias Químicas, Centro Nacional de Investigaciones Científicas, La Habana, Cuba Título de la Tesis: Phase transformations in pyrite-polymetallic minerals Supervisores: Drs. V. Nikolaev and A. Dago

2009 Dr. in Sc. (Doctorado de 2do nivel)), Universidad de La Habana, Enero 2010 Título de la Tesis: Hexacyano Metallates and Nitroprusside of Transition Metals: Physical Properties

 previous and current positions:

1977-1980: Graduated Instructor for Physics, Central University of Las Villas, Cuba
1980-1992: Assistant Researcher, National Center for Scientific Research, Havana, Cuba
1992-1995: Full Researcher, National Center for Scientific Research, Havana, Cuba; General Vice-Director and Director of the Chemistry Division, National Center for Scientific Research, Havana, Cuba.
1996-2005 Full Researcher, Institute of Materials and Reagents, University of Havana, Cuba Head of the Joint Scientific Council of the Faculty of Physics and Materials Science Institute, Havana University (2000- 2006)
1997-1999: CONACyT Patrimonial Excellence Position, Level II, México
1999-2001: Full Professor, National Polytechnic Institute, CICATA-Unidad Legaria, México
2005- Full Professor, National Polytechnic Institute, CICATA-Unidad Legaria, México
2007- National Researcher Level III (SNI III), Mexico

Publications & Contributions:

1) Tribochemical Synthesis and Reactions of Silver Hexacyanoferrates, José Fernández-Bertrán, José Blanco, Edilso Reguera, Carlos Díaz Aguila and Teresa Abrantes, Proc. V Ibero-American Congress on Inorganic Chemistry, Saltillo City, México, April 1995, 426-429.
2) Synthesis and Characterization of Two Complexes of Lanthanum and Glycine, J. Fernández-Bertrán, E. Reguera, A. Dago and C. López Hernández, Proc. V Ibero-American Congress on Inorganic Chemistry, Saltillo City, México, April 1995, 422-425.
3) Applications of the Mössbauer Spectroscopy to the Study of Iron Coordination Compounds, E. Reguera and J. Fernández, Proc. V Ibero-American Congress on Inorganic Chemistry, Saltillo city, México, April 1995, 505-08.
4) Characterization of Active Principles Derived from Natural Clinoptilolite Modified with Sodium Carbonate, Aramis Rivera, Gerardo Rodríguez, Edilso Reguera, Enelio Torres, Francisco Machado; Proc. Zeolite 97; 5th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites; Naples, Italy, Sept 21-29, 1997; 255- 257.
5) Characterization of Iron-Exchanged Forms of a Modified Clinoptilolite: A Solid State Multinuclear NMR Study. G. Rodríguez, L.C. de Menorval, E. Reguera, F. Chávez, Proc. Zeolites 02, 6th International Conf. Occurrence, Properties and Utilization of Natural Zeolites, Thessaloniki, Greece, June, 2002, 307-310.

Patentes ;

MXa2016016019 Dispositivo para la generación de películas delgadas por el método de inmersión, en el IMPI
MXa2016017176 Remoción de Arsénico del agua de consumo humano a partir de nanopartículas de hierro, en el IMPI
MXa2016017181 Proceso de Oxidación foto-catalítica de agua en fotosíntesis artificial, con nanoestructuras activas         ante luz solar, en el IMPI
MXE2017089808 Proceso para la obtención de pellets de carbón bituminoso activado para el almacenamiento de gas,     en el IMPI
MX/a/2018/014339 Proceso para el tratamiento post depósito de capas del complejo cobalto-fosfato copi para       aumentar la respuesta electrocatalítica en la oxidación de agua, en IMPI